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Abstract Determining the three-dimensional structure of a

protein is an important step in understanding biological func-

tion. Despite advances in experimental methods (crystallog-

raphy and NMR) and protein structure prediction techniques,

the gap between the number of known protein sequences and

determined structures continues to grow.

Approaches to protein structure prediction vary from those

that apply physical principles to those that consider known

amino acid sequences and previously determined protein

structures. In this paper we consider a two-step approach

to structure prediction: (1) predict contacts between amino

acids using sequence data; (2) predict protein structure us-

ing the predicted contact maps. Our focus is on the second

step of this approach. In particular, we apply a case-based

reasoning framework to determine the alignment of sec-

ondary structures based on previous experiences stored in

a case base, along with detailed knowledge of the chemi-

cal and physical properties of proteins. Case-based reason-

ing is founded on the premise that similar problems have

similar solutions. Our hypothesis is that we can use pre-

viously determined structures and their contact maps to

predict the structure for novel proteins from their contact

maps.
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The paper presents an overview of contact maps along

with the general principles behind our methodology of case-

based reasoning. We discuss details of the implementation of

our system and present empirical results using contact maps

retrieved from the Protein Data Bank.
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1. Introduction

The accurate prediction of protein structure from sequence

data is a fundamental problem in modern molecular biology.

Despite current endevours in experimental (crystallographic

and NMR) efforts, the determination of protein structure can-

not keep pace with the increase in known sequences. At-

tempts to predict structure vary from those that apply phys-

ical principles to those that consider known amino acid se-

quences and protein structures. One approach to this prob-

lem is to first predict a contact map and structural features

from a given protein sequence, and then to reconstruct the

three-dimensional (3D) structure of the protein from its pre-

dicted contact map. This paper addresses the second step in

this process by proposing an effective method for structure

determination from contact maps using knowledge derived

from the Protein Data Bank (PDB) (Berman et al., 2000),

along with known and derived properties of protein structure

and sequence. The method is hierarchical, in the sense that

it considers protein contact maps at varying levels of struc-

tural complexity. In a bottom-up fashion, we initially con-

struct secondary structure motifs using the contact map and

geometric knowledge of α-helices and β-strands. Contacts

between residues in pairs of secondary structures are used to
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Fig. 1 Distance map and contact map for the protein Bacterioferritin
(Cytochrome B1). The axes represent the residues of the protein starting
from the N terminus (bottom left corner). In the distance map, darker

colors correspond to closer distances. For the contact map, black areas
correspond to values of 1, where residues are in contact (within 10 Å of
one another)

predict the alignment for the pairs based on substructures in

the PDB with similar contact maps. Similarly, we propose

that super-secondary structure and tertiary structure align-

ments can be predicted based on structures retrieved from

the PDB using contact maps at higher levels of the hierarchy.

To solve novel structures from contact maps we apply

Case-Based Reasoning (CBR), which is founded on the

premise that similar problems have similar solutions. The

underlying hypothesis of our research, and our motivation

for using CBR as a problem solving tool, is that proteins

with similar contact maps tend to have similar 3D struc-

tures. Aaronson, Juergen, and Overton (1993) suggest that

analogical reasoning is particularly applicable to the bio-

logical domain, partly because biological systems are often

homologous (rooted in evolution). As well, biologists of-

ten use a form of reasoning similar to CBR, where exper-

iments are designed and performed based on the similarity

between features of a new system and those of known sys-

tems. CBR and/or analogical reasoning has previously been

applied to a number of problems in molecular biology, in-

cluding gene finding (Shavlik, 1991), prediction of unknown

regulatory regions in genes (Aaronson, Juergen, and Overton,

1993), planning of sequence experiments (Kettler and Dar-

den, 1993), secondary structure prediction (Leng, Buchanan,

and Nicholas, 1993) and protein crystallization (Hennessy et

al., 2000; Jurisica et al., 2001). An overview of these systems

can be found in Jurisica and Glasgow (2004).

Our current focus is on predicting the alignment, or rel-

ative location, in 3D space of α-helices given the contacts

between their residues. The paper begins with an overview of

contact maps, followed by a description of the methodology

used (the CBR paradigm), and its application to the prob-

lem of protein structure recovery from contact maps. Results

from testing the technique using contact maps derived from

structures in the PDB are presented.

2. Methods

2.1. Contact maps

A distance map, D, for a protein with n amino acid residues

is an n × n, symmetric array where entry D(ai , a j ) is the dis-

tance between residue ai and residue a j , generally calculated

at the coordinates of the Cα atoms for the residues. Given a

distance map D, we compute a contact map C for the protein

as a symmetric, n × n array such that:

C(ai , a j ) =
{

1, if D(ai , a j ) < t ;
0, otherwise.

where t is a given threshold value.1 Thus, there exists a con-

tact between residues ai and a j if and only if they are within

a given distance t of one another in the protein structure.

Figure 1 illustrates image representations for a distance map

and a contact map reconstructed from the PDB entry for pro-

tein Bacterioferritin. The contact map is calculated using a

distance threshold of 10 Å.

Secondary structures, the building blocks of protein struc-

tures, are easily recognizable in a contact map: α-helices ap-

1 For the purpose of this paper, contact maps will be computed for
known structures. Future work will involve contact maps that have been
predicted from sequence information.
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Fig. 2 Secondary structure contact map for the protein Bacterioferritin
containing 11 secondary structures

pear as thick bands along the main diagonal; β-sheets appear

as thin bands parallel and perpendicular to the main diagonal.

A contact map can be viewed as a translational and rotational

invariant representation of the protein’s topology, capturing

much of its relevant structural information. It provides a “fin-

gerprint” that can be used to efficiently compare proteins to

find ones with similar substructures.

Our approach incorporates an hierarchical search strat-

egy that initially locates proteins that have similar secondary

structures to our input protein. Given a protein p with j sec-

ondary structures (α-helices, β-sheets and coils), we define

its secondary structure contact map as the j × j array S such

that S(sm, sn) = k, where k is the number of contacts in map

C between residues in secondary structure sm and residues in

secondary structure sn for protein p. Figure 2 illustrates the

secondary structure contact map corresponding to the contact

map of Fig. 1.

To predict the alignment of sub-structures in 3D space,

we consider contact maps, Csm ,sn , corresponding to pairs of

secondary structures (sm, sn) such that S(sm, sn) > 4.2 This

map is the subarray of C such that the the rows of Csm ,sn

correspond to the amino acid residues in secondary structure

sm and the columns correspond to the residues in secondary

structure sn . These maps need only be defined for contacts

along and below the diagonal of the secondary structure con-

tact map, as the map for pair (sm, sn) is equivalent to that for

(sn, sm). Note, that unlike the protein contact map and the

secondary structure contact map, the contact maps for pairs

of helices are not generally symmetric. Figure 3 illustrates a

contact map for a pair of α-helices.

2.2. Case-based reasoning

Artificial intelligence systems generally solve problems by

reasoning from first principles. An alternative approach is

to solve novel problems through analogy with old prob-

2 If there are fewer than five contacts between two secondary structures
it is difficult to determine their orientation from their contacts.

Fig. 3 The sub-contact CHelix−6,Helix−8 map for a pair of helices in
protein Bacterioferritin. Since the diagonal band shows contacts that
extend from the beginning of helix 6 and end of helix 8, to the end
of 6 and beginning of 8, we can discern that the helices are oriented
anti-parallel to one another

lems. CBR (Kolodner, 1993; Riesbeck and Schank, 1989) is

a paradigm for analogical reasoning where experiences are

represented as cases in a case base, then retrieved and reused

during problem solving. A case represents knowledge about

a particular problem solving experience and includes a prob-

lem description, a solution to the problem and (if available)

feedback on the success of the solution. The case base is a

repository of cases, designed to support the efficient storage

and retrieval of a large number of complex cases. CBR is

particularly useful in domains that are poorly understood or

evolving, where knowledge is difficult to formalize.

As illustrated in Fig. 4, a CBR system consists of several

components. Once a problem (a case without a solution) is

submitted to the system, the first task is to retrieve previous

experiences with similar problem descriptions. A similarity

function, which is often complex and domain dependent,

determines which cases are most relevant to the problem

at hand. The case base may be organized, or indexed, so

that only a subset of the relevant cases are considered, thus

making the retrieval process more efficient. The results of

retrieval are passed on to the adapt module. Here the solutions

from the retrieved cases are modified to derive a potential

solution for the new problem. Approaches to adaptation are

mostly domain dependent. Machine learning or data mining

techniques applied to the case base can be incorporated in

the development of the adaptation module. Once a solution

has been proposed, it is evaluated in terms of previous cases

and/or domain knowledge. If the solution is not satisfactory,

the system may return to the adaptation module for further

modification. Once a solution is deemed satisfactory, it is

applied and feedback (if available) is added to the case which

is then saved in the case base.
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Fig. 4 Architecture of a CBR
system for determining protein
structure from contact maps

Our method consists of designing and implementing a

CBR system that retrieves and adapts protein data from the

PDB in order to construct potential 3D structural models

for our input protein. All potential models are evaluated in

terms of domain knowledge and the “best” structures will ul-

timately be used as building blocks at the next level of model

building. The implementation is tested on the alignment of

pairs of α helices using ideal contact maps (i.e., those com-

puted using coordinates in the PDB).

2.3. Applying CBR to structure alignment

Below we describe the application of CBR to the problem

of determining the 3D structure of a protein from a contact

map. The approach incorporates a case representation that

captures the contact between substructures of the protein at

both the amino acid and the secondary structure levels. This

allows for an efficient preliminary search of the case base to

retrieve proteins that may have similar solutions, followed

by a more detailed analysis of contacts between amino acids

to adapt previous solutions to the new problem.

Case representation

Recall that a case has three parts: a problem description, a

solution and feedback on the solution. The problem descrip-
tion - input to the system - consists of the following attributes

and their corresponding values:

– protein name;

– protein sequence;

– assignment of secondary structure to residues;

– class of structure;

– contact map for protein.

Secondary structure maps and maps for pairs of secondary

structures are computed using the protein contact map and

secondary structure assignment.

The solution consists of a 3D backbone model of the pro-

tein structure computed for the input contact map (henceforth

we will refer to this as the target map). The feedback (if avail-

able), consists of the correct structure for the protein and the

calculated root mean square distance (RMSD) measure be-

tween the predicted structure and the correct structure. This

distance provides a measure of “goodness” for the derived

solution. Note that the values for attributes need not be ex-

plicitly stored in the case base. Rather, these values may be

pointers to the location of the information (e.g., a pointer to

the structure in the PDB) or procedures that allow for the

computation of a value on an “as needed” basis (as in the

contact maps for known structures).

The solution for a novel target case is a protein structure

predicted from its contact map using a step-wise, hierarchical

approach:

1. For each target map C(sm ,sn ) that contains more than four

contacts, use CBR to determine an optimal alignment of

the two secondary structures using experience embodied

in the PDB.

2. Using the aligned pairs of secondary structures as build-

ing blocks, super-secondary and tertiary structures can be

constructed by once again using a CBR approach.

This paper focuses on the first step of the procedure. In

particular, we construct the individual α-helices for a protein

then retrieve contact maps with known structures similar to

the target maps and adapt the structures to predict alignments

for the unknown structures.
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Fig. 5 Illustration of similar, (a)
and (c), contact maps and a map
(b) that is dissimilar to the other
two

Case retrieval

Cases are organized (indexed) in the case base by class of

structure: α domains, β domains and α/β domains. When

initiating a retrieval, only cases that match the class of the

input protein are considered. For the purpose of this paper

we considered proteins in the α domain.

For each query map Csm ,sn such that m �= n, we retrieve

proteins that contain substructures (pairs of secondary struc-

tures) with contact maps most similar to Csm ,sn .

A similarity measure for comparing the query contact map

with maps generated from structures in the PDB was derived

using techniques from machine vision, where we consider

the black regions to be the image within the array. We were

less concerned about the dimensions of the map, than what

it looked like in terms of shape and location of black regions

(regions which contain contacts). For example, Fig. 5 illus-

trates three different maps for pairs of helices, where maps

(a) and (c) are considered similar to one another, and (b) is

different from the other two.

The retrieval of similar contact maps involves a two-tiered

approach. Given a query contact map, the first tier uses

general content descriptors to cull the dataset of dissimi-

lar contact maps. These descriptors are: quadtrees (Sullivan

and Baker, 1994), color and edge distributions (Smith and

Chang, 1994; Won, Park, and park, 2002) and gray-level co-

occurrence matrices (Haralick, Shanmugam, and Dinstein,

1973). A committee of these general content descriptors is

used in the first tier of retrieval. The committee results in a

set of contact maps which are present in the retrievals of two

or more general content descriptors. It was determined em-

pirically that 100 retrievals for each descriptor is sufficient.

The results of the committee are then used in the second tier

of retrieval.

For the second tier, the Jaccard’s distance (Jaccard, 1908)

was calculated between each contact map from the first tier

and the query map. Because the maps vary in size, a sliding

window approach was used to determine the best matching

regions between the query and the contact maps from the first

tier. The best mapping regions also provide registration of

residues for evaluation using RMSD. The best 25 retrievals

were then selected from the 100 as the final set of contact

maps to be returned.

Adaptation

The retrieval process returns, for each query contact map, po-

tential helix pairs from the PDB ranked in order of estimated

similarity. For each query map, the adaptation phase of CBR

transfers the structure information from the highest-ranking

structures to the the input case.

Transferring locations requires a mapping function—that

is, a set of alignments that determine which residues in the

target structure3 map to which residues in the retrieved struc-

ture. This is achieved by first aligning the contact maps so

that the mean cell location of contacting amino acid residues

in the retrieved structure aligns with the mean cell location of

contacting residues in the target. Then all amino acid residues

in the target structure that have corresponding residues in the

known structure are given the coordinate information from

these residues. Usually there remain some target residues

with no coordinates (i.e., no corresponding residue in the

known structure). Since α-helices tend to have a consistent

structure, the missing coordinates are filled in using general

domain knowledge. Specifically, each turn of an α-helix is

estimated at 5.4 Å along the helix axis and each turn at

5 Å across. Using this information and the helix axis, calcu-

lated from the filled-in locations, our system is able to infer

these unmatched residue locations. Figure 6 illustrates the

portions of the helices that are determined through our map-

ping function and those constructed from domain knowledge

(grown area).

Evaluation of potential structures

The adaptation component of our CBR system outputs mul-

tiple possible substructures of helix pairs. In the evaluate

module, we wish to rank the potential structures using mul-

tiple sources of knowledge and expertise. One question we

are faced with is how to integrate these diverse knowledge

sources. This question is addressed by incorporating an archi-

tecture that will allow us to discard any of the structures that

are infeasible (based on physical or chemical constraints) and

determine which of the remaining structures is most likely to

3 We use the term “target structure” to denote the predicted substructure
for the current query contact map.
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be closest to the correct structure. We apply FORR (FOrr the

Right Reasons) (Epstein, 1994), a cognitive architecture for

learning and problem solving by consensus among heuristic

rationales, to integrate our multiple sources of knowledge.4

Each rationale in a FORR-based system is implemented

as a resource-limited procedure called an Advisor. Examples

of Advisors that are currently being implemented for our

system are:� The side chain Advisor examines pairs of residues that are

in contact in the model and determines, given their possible

side chain configurations, whether the predicted locations

are feasible.� The contact map Advisor compares the contact map of

the predicted model with the contact map for the problem

description.

We anticipate that the final system will have between 20

and 30 expert advisors that will participate in the evaluation

process.

Each Advisor comments on (assigns a value to) a poten-

tial problem solution. The ultimate decision of the system is

based on a weighted sum of these individual comments.5 The

strength of a comment, which is an integer value in the range

[−1..1], denotes the Advisors’ opinions about the particular

structure. Positive strengths represent a degree of support,

negative strengths a degree of opposition, and a strength of

0 denotes indifference to the structure.

4 The FORR system has been successfully applied to the development
of problem solving systems for the domain of path finding in grid-
world mazes (Epstein, 1998) and for the domain of finite-board games
(Epstein, Gelfand, and Lock, 1998). Similar to our molecular domain,
these previous applications involve spatial reasoning and rely on mul-
tiple (possibly conflicting) sources of expertise.
5 Advisors may vary in importance and trustworthiness; this is reflected
in the weights assigned to them.

Fig. 6 The target structure for a given query contact map is predicted
using the mapping area for the retrieved structure and extending the
helices (grown area) based on the known geometry for helices

A voting procedure assesses a structure m using a

weighted tally of the strengths of the Advisors’ comments:

υ(m) =
n∑

i=1

w(Ai ) × s(Ai , m) (1)

where Ai is an Advisor, s(Ai , m) is the strength of Ai ’s com-

ment for m, and w(Ai ) is the weight assigned to Advisor Ai .

Our approach incorporates a neural net learning algorithm to

determine optimal weights for Advisors.

The evaluation process depends on gathering knowledge

and data about what constitutes a “good” structure. This is

being achieved through: (1) statistical and machine learning

analysis of existing databases of protein structures; (2) ac-

quisition of expert knowledge (accessed through interviews

and research papers); (3) assimilation of text-book knowl-

edge; and (4) incorporation of existing algorithms for protein

structure evaluation.

The ability to evaluate the quality of a protein model is

fundamental to the determination of structure from sequence.

This is true whether we are deriving a structure using struc-

ture prediction or experimental structure determination meth-

ods. The quality of a protein model is based on whether it

adheres to the known principles of chemistry, biology and

physics, and whether it is consistent with the information

available from the primary sequence, the experimental data

and the previously determined structures. An evaluation pro-

cess may involve considering a single model or comparing

multiple competing models. Research in model evaluation

for experimentally derived structures has previously focussed

on verifying that the final protein model is correct (Luthy,

Bowie, and Eisenber, 1992).6 Kleywegt and Jones (1997)

have proposed some quality control criteria for the assess-

ment of intermediate protein models. The tools they and oth-

ers suggest generally assume a single complete model, which

is evaluated to determine what parts of the structure need to

be revised or rebuilt. Our system, however, evaluates a set of

partial models to identify the most promising.

Results

The retrieval and adaptation components of the CBR system

were applied to to a set of 61 proteins, mostly all α chains,

retrieved from the PDB:

1a0aA, 1a1z , 1a28A, 1acp , 1afrA, 1aj8A, 1akhA,

1akhB, 1am9A, 1aoiA,

6 Even with techniques for evaluating the final protein model, incorrect
models have been published and entered into the protein database.
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Table 1 The results of the committee on 422
unique queries when the top N out of 100 are
returned as the final set of contact maps

N Mean Std Mean best Rank

100 1.8604 0.8035 0.5259 7.5

50 1.6498 0.6447 0.5303 7

25 1.3944 0.5077 0.5506 5

10 1.1919 0.4166 0.6034 3

1aoiB, 1arv , 1auiB, 1auwA, 1bbhA, 1bcfA, 1bgp ,

1bh9A, 1bh9B, 1bu7A,

1bvb , 1c52 , 1cc5 , 1cem , 1cktA, 1cll , 1cpq , 1csh ,

1cy5A, 1d9cA,

1dceB, 1dpsA, 1ea1A, 1eerA, 1eteA, 1fce , 1fgjA, 1ft1B,

1furA, 1gakA,

1hcrA, 1hnr , 1hryA, 1huuA, 1hyp , 1kx2A, 1lbd , 1lfb ,

1lis , 1lmb3,

1mhyD, 1neq , 1pbwA, 1pru , 1rzl , 1tc3C, 1tx4A, 1uxc ,

2af8 , 2hddA, 2ilk .

For each protein, we computed the distance map, contact

map and secondary structure contact map. From the contact

maps, we were able to derive 422 maps that described con-

tacts for pairs of helices.

The results of the retrieval process for 422 unique test

queries are shown in Table 1. N is the number of cases re-

trieved; Mean describes the average RMSD for the queries

and Std is the average standard deviation. Mean Best and

Rank describe the average best RMSD and its median rank

within the final set of contact maps. The results suggest the

following:� As N, the number of retrieved cases, decreases the average

RMSD of the final set of contact maps improves.� The Mean Best represents the best structure match and

worsens as N decreases.� As N increases from 25 to 50 to 100, the Mean Best does

not change significantly.

Further examination of the 100 retrievals using the commit-

tee determined that 65.40% of the 422 queries have its best

RMSD fall within the top 10 retrievals, 83.18% within the

top 25 and 96.45% within the top 50. Thus, a final set of

contact maps consisting of the top 25 retrievals from a set

of 100 seems to be the best balance between a low average

RMSD over all the retrievals and a low RMSD for the aver-

age best retrieval. This ensures all the retrievals are similar to

the query and contains the best match in ∼83% of the cases.

Table 2 Experimental results
when considering the top n
results. RMSD denotes the
mean of the best scores for each
of the 422 input cases for the top
n retrievals

n RMSD

1 3.6668

5 2.2667

10 1.8814

25 1.5286

50 1.3921

100 1.3011

200 1.2507

422(all) 1.2426

Using the results of the retrieval module, we evaluated the

adaptation method by comparing the predicted locations of

the residues to the actual locations, as given in the Protein

Data Bank (PDB) in terms of RSMD. The results when con-

sidering the top N retrievals, for N = 1, 5, 10 25, 50, 100,

200, and 422 are presented Table 2. These results suggest

that we converge to a good solution when considering about

the top 50 solutions.

Note that the retrieval scores for the Mean Best (in terms of

RMSD between the correct and predicted structures) are less

than the adaptation scores (which reported the distance be-

tween the retrieved structures and the correct structure). The

reason for this is that the retrieval scores are based on the

RMSD of only the regions of the helices in contact with each

other. The adaptation method extends the helices beyond the

regions of contact based on biochemical knowledge, afford-

ing more opportunity for error.

3. Discussion

We have described and demonstrated the applicability of the

CBR methodology to the problem of secondary structure

alignment from contact maps. Initial results suggest that the

retrieve and adapt phases are successful in finding similar

contact maps in the PDB and modifying these to predict the

alignment of pairs of helices. The advantage and novelty of

our approach lies in its use of multiple sources of knowledge,

including existing structural knowledge from the PDB, expert

and text book knowledge, as well as knowledge mined from

the database.

Our initial results considered contact maps computed from

existing structures in the PDB. Various approaches have been

considered for the process of predicting contact maps for a

protein from its primary sequence and structural features;

these are primarily based on neural network-based methods

(Fariselli et al., 2001; Pollastri and Baldi, 2002). Punta and

Rost (2005) propose a contact prediction method that com-

bines alignment information, secondary structure predictions

and solvent accessibility. While results from these studies
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are encouraging, they still result in maps that contain a large

degree of noise. This suggests that in the second phase of

prediction, we must be able to recover structure from such

noisy maps. Future work will include prediction of structure

from predicted contact maps.

Previous methods for the recovery of 3D structure from

distance contact maps are mostly based on distance geom-

etry and stochastic optimization techniques. Nilges, Clore,

and Gronenborn (1988) applied distance maps and dynam-

ical simulated annealing to determine the 3D structure of

proteins. More recently Vendruscolo, Kussell, and Domany

(1997) proposed a dynamic approach that generates a struc-

ture that has a contact map similar to the query contact map.

References

Aaronson JS, Juergen H, Overton GC. Knowledge discovery in gen-
bank. In: Hunter L, Searls D, and Shavlik J, eds. In: Proceedings
of the First International Conference on Intelligent Systems for
Molecular Biology, AAAI Press, 1993;3–11.

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig
H, SHindyalov IN, Bourne PE. Protein data bank. Nucleic Acids
Research 2000;28:235–242.

Epstein S. For the right reasons: The FORR architecture for learning in
a skill domain. Cognitive Science 1994;18(3):479–511.

Epstein S. Pragmatic navigation: Reactivity, heuristics and search. Ar-
tificial Intelligence 1998;100:275–322.

Epstein S, Gelfand J, Lock E. Learning game-specific spatially oriented
heuristics. Constraints: An International Journal 1998;2:239–251.

Fariselli P, Olmea O, Valencia A, Casadio R. Prediction of contact
maps with neural networks and correlated mutations. Protein
Engineering 2001;14(11):835–843.

Haralick RM, Shanmugam K, Dinstein I. Textural features for
image classification. IEEE Transactions on Systems, Man and
Cybernetics SMC-1973;3(6):610–621.

Hennessy D, Buchanan B, Subramanian D, Wilkosz PA, Rosenberg
JM. Statistical methods for the objective design of screening
procedures for macromolecular crystallization. Acta Crystallogr
D Biol Crystallogr 2000;56(Pt 7):817–827.

Jaccard P. Nouvelles recherches sur la distribution florale. Bulletin de
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