
A Morphological Image Preprocessing Suite for OCR on
Natural Scene Images

Megan Elmore
Georgia Institute of Technology
melmore@cc.gatech.edu

Margaret Martonosi
Princeton University

mrm@princeton.edu

ABSTRACT
As demand grows for mobile applications, research in optical
character recognition (OCR), a technology well-developed
for document imaging, is shifting focus to the recognition of
text embedded in digital photographs or video. Segmenting
text and background in natural scenes is a difficult classifica-
tion problem, and the accuracy of this segmentation is of ut-
most importance when the output of an OCR system will be
transformed as in translation or speech synthesis. Our work
proposes an image preprocessing suite that, through text
detection, auto-rotation, and noise reduction, improves the
accuracy of OCR analysis in a camera-based translation sys-
tem. Our novel approaches for foreground/background de-
tection and skew estimation using morphological edge anal-
ysis show immediate improvement in OCR accuracy, and
our experimental classification of text regions using unsuper-
vised feature-based clustering provides a good background
for future research in applying signal processing and machine
learning techniques to the problem of text detection.

1. INTRODUCTION
Optical character recognition, or OCR, is a powerful tool for
bringing information from our analog lives into our increas-
ingly digital world. This technology has long seen use in doc-
ument imaging; by scanning or photographing documents
we may convert them into soft copies that can be edited,
searched, reproduced and transported with ease. With dig-
itally reproduced information at our fingertips, the world’s
business, research, and governmental spheres grow more pro-
ductive.

As portable computing is becoming more accessible to the
public, new and exciting applications of character and im-
age recognition have started to emerge. Some modern mo-
bile devices can use pictures of words or barcodes to search,
download and purchase; currently-deployed applications for
saving contact information from business cards may soon al-
low businesspeople to carry only one personalized card with
no physical copies to share. Screen readers already voice dig-

ital text to aid the blind, and future OCR-enhanced appli-
cations embedded in mobile devices may allow blind persons
to “see” the wider world untethered.

A particularly interesting application of OCR is to com-
bine character recognition with natural language transla-
tion. With these two technologies intertwined and deployed
for mobile devices, the language barrier faced by tourists
and immigrants lowers; visitors can take pictures of public
signage and have the same access to information as locals.
The major technical hurdle of such an application is ensuring
that the OCR output is accurate enough to allow a useful
translation — recognizing text from natural scenes and mo-
bile camera images is much more difficult than analyzing
clear document text. Environmental and camera conditions
may reduce image clarity, and text must be segmented from
a very complex rather than uniform background. As ev-
idenced by the heavy focus on image processing concerns
shown by prototype image translation systems ([8], [12],
[28]) the challenge of adapting OCR to natural scene images
must be accomplished before any accurate synthesis with
translation or other transformative technologies is possible.

The goal of this research is to address with a preprocess-
ing software suite the complications natural scenes imaged
with a mobile device introduce to the OCR process. We
first build on existing approaches for text detection, using a
morphological edge-detection strategy to isolate connected
components in an image that may be classified as text. To
perform this classification, we cluster the extracted candi-
date regions based on their inherent size and color features,
with the goal of partitioning the image into text and back-
ground elements. After identifying text, we detect and cor-
rect its angle of rotation using the skew of the edges detected
in the text regions of the image. Finally we use a simple
morphological approach to reduce noise from the rotation
and conversion of text into black and white. It is our goal
to develop a preprocessing system robust enough to allow
us to build and deploy a portable, OCR-based translation
system.

2. OUTLINE
In section 3, we discuss related work in image preprocess-
ing for enhancing OCR output and in systems that combine
OCR with natural language translation. Next, section 4
describes our prototype mobile application for translating
image text. Section 5 contains implementation details for
our image preprocessing suite. Section 6 outlines our exper-



imental methods, and section 7 is a discussion of the results
of our early experiments. Finally, section 8 summarizes the
contributions of this paper and gives an overview of our fu-
ture research goals.

3. RELATED WORK
OCR systems have been under development in research and
industry since the 1950s (see [20] for a detailed history).
Such systems use knowledge-based and statistical pattern
recognition techniques to transform scanned or photographed
images of text into machine-editable text files. There are
several commercially-available OCR systems on the market
today, such as ABBYY FineReader, OmniPage, and Mi-
crosoft Office Document Imaging. The research and open-
source communities offer comparable systems like GOCR [1],
Ocrad [4], and Tesseract [27] under free software licenses.

In these and similar systems, the OCR process has 5 main
steps: preprocessing to improve the quality of the input im-
age, binarization (to black and white), text segmentation,
character recognition, and post-processing based on knowl-
edge of the target language of the text. These steps are
most effective when applied to document text, which when
collected by a scanner is generally aligned and has clear
contrast between text and its uniform background. How-
ever, using scene text, or text that appears in a complex
background like a sign in a natural scene, as the input to
an OCR system makes the preprocessing steps necessarily
more complex. The imaging device, a portable camera, may
cause scene text to be rotated, out of focus, or at a non-
optimal perspective for legibility. At a more semantic level,
scene text may have uneven lighting that makes contrast
with the background less sharp and uniform, or there may
be parts of the background that have similar properties to
text after binarization. Liang, Doermann and Li [16] pro-
vide a detailed treatment of these and other challenges to
camera-based document analysis; for the rest of this sec-
tion we discuss existing work related to the preprocessing,
binarization, and text segmentation challenges that are ad-
dressed by our proposed image preprocessing suite.

3.1 Binarization
Traditionally, OCR systems have a binarization step that
classifies image pixels as text (black) or background (white).
This rigid partitioning allows the text segmentation and
character recognition steps to only analyze the regions of
the image that most likely contain text. When preprocessing
scene text, the binarization step is used both to isolate these
candidate text regions for analysis and to provide the sharp
contrast with anything considered as background needed by
the later processing steps.

Binarization is commonly performed using thresholding, a
technique to partition the colors in the image into two sets
based on a histogram or other statistical measure. There are
two major classes of thresholding algorithms: global, which
decides on one partition for the entire image based the prop-
erties of the entire image, and local (or adaptive), which con-
siders the properties within smaller regions to produce pos-
sibly differing partitions for each region. Otsu’s method for
grayscale images [22], a global thresholding technique preva-
lent in document recognition literature, uses a histogram to
search for the partition that minimizes the variance in gray-

levels within each set in the partition. Where local thresh-
olding is more appropriate, it is common to use a technique
similar to Niblack’s method for grayscale images [21], which
sets each region’s threshold to be a fixed fraction of one
standard deviation above or below the average gray level
within the region. Experimentally, we found that binarizing
the text selection of our image using Otsu’s method more
accurately preserved legibility.

3.2 Text Detection
When performing OCR on a natural scene image, the com-
plexity of the background often precludes the separation
of text from background based on thresholding information
alone. Rather, binarization as a part of and or/after a pro-
cess to detect regions that most likely contain text based on
more complex properties. The survey of text information
extraction by Jung, Kim and Jain [13] covers a wealth of
approaches to text detection and localization; here, we dis-
cuss text detection techniques that rely upon the properties
of color, edges and texture.

It is difficult to assess the relative merits of published ap-
proaches as there is not a common corpus of test images
nor another established standard by which they each were
tested. The survey paper by Jung et al. discusses some rel-
ative and qualitative merits of the approaches it covers, and
Messelodi and Modena’s paper on text detection [19] col-
lects the results of the related work they cite in addition to
providing an extensive discussion of properties used to dis-
tinguish text candidate regions in their and other connected
component (sometimes written CC)-based approaches.

3.2.1 Color-based Text Detection and Heuristic Con-
nected Component Filtering

Many text detection approaches first divide an image into
contiguous regions, or connected components, of similar color
and then analyze these regions for other properties charac-
teristic of printed or handwritten text. [11] and [14] use color
quantization to define connected components, while [19] ex-
tract connected components at the gray-level by creating
three slices of the grayscale image using a head and a tail
threshold from the histogram. Central to all of these works
is a need for aggressive heuristic filtering to determine which
connected components contain text. Some common classes
of heuristics used across these works are color distribution
within the component’s region, character- or word-like size
and dimensions, and location near other like components;
our work explores the statistical importance of some com-
mon heuristics in a text candidate clustering scheme.

3.2.2 Edge-based Text Detection and Mathematical
Morphology

A second class of text detection algorithms is edge-based al-
gorithms, or those that use the positions at which their is
a high level of contrast between neighboring pixels to de-
termine the likely location of text. Many such algorithms
isolate edges with the Canny edge filter [7], which can es-
timate horizontal, vertical, and diagonal edges by detecting
local maxima across the image’s intensity gradient in these
directions.

Other edge detection approaches use the operators of math-



ematical morphology [25]. A morphological operation com-
monly used in edge detection is the morphological gradient,
which is the difference between the dilation and erosion of
an image by a connectivity-preserving structuring element.
This operation results in a pixel-wise description of the con-
trast between the value of each pixel and its neighborhood
corresponding to the structuring element.

One morphological approach that is prominent in text de-
tection literature is that of Hasan and Karam [10]. They ap-
ply the morphological gradient to grayscale images blurred
by morphological openings and closings, and strong edges
are determined by preserving all pixels in the gradient im-
age above a global gray-level threshold. Connected edges
are then grouped by another closing and labeled by a fast
forward-backward propagation algorithm, and the minimum
bounding rectangles around pixels with the same label are
analyzed as text candidate region. This text detection ap-
proach is robust to text orientation and skew but requires
further exploration to determine its merit, as the authors
provide only three qualitative examples of the algorithm’s
output. Our work uses this morphological edge-extraction
approach, and we attempt to enhance the accuracy of ex-
tracting text by exploring more color, size, and spatial heuris-
tics in combination with the extracted edge data.

3.2.3 Texture-based Text Detection
A final class of text detection algorithms have a texture-
based approach. These algorithms use mathematical trans-
forms and/or machine learning strategies to detect regions
of an image whose pattern of pixels match what is consid-
ered a text-like texture, as opposed to flat regions of one
color or other textures of the background. Some exam-
ples of texture-based detection schemes are Liu, Wang, and
Dai’s color texture approach using the Wavelet transform
[18] and Shin et al.’s non-feature-based support vector ma-
chine (SVM) texture learning approach [26]. While these
approaches show promise in distinguishing the nuanced dif-
ference between text and background in natural scene im-
ages, they are hampered by computational complexity and
the difficulty in defining and standardizing the text-like pat-
tern that these methods detect.

3.3 Additional Preprocessing
3.3.1 Auto-Rotation
When OCR input is taken from a hand-held camera or other
imaging device whose perspective is not fixed like a scanner,
text lines may skewed from their original orientation. OCR
systems often use an auto-rotation algorithm to correct this
skew before processing text further, but in natural scene im-
ages it is often necessary for the auto-rotation step to come
after text detection and binarization so the original line ori-
entation is estimated without considering any lines present
in the complex background. Commercial and open-source
OCR software also cannot often correct for large amounts of
rotation, so extra auto-rotation processing may be helpful
for camera-images black and white documents as well.

In traditional document analysis, text often falls into a rigid
layout with set margins. An auto-rotation algorithm based
on finding margins, such as that described in [6], falls eas-
ily out of this assumption of regularity. Their algorithm

determines the angle of rotation from the sample set of
horizontally-first text pixels encountered at regular verti-
cal intervals. In their experiments, this algorithm shows a
substantial improvement over the auto-rotation capabilities
of the FineReader OCR software. However, this software is
ill-suited for text images like those of road signs that lack
margins.

A more robust approach to auto-rotation for use on natural
scene images involves detecting the slope between connected
components that make up a text line ([5], [19]). Such an ap-
proach does not depend on the location of lines relative to
each other, but it does involve significant computational ef-
fort as neighboring components are merged until all lines are
completely formed. We attempt to reduce this overhead by
estimating slopes from morphological edge groupings, which
inherently encompass the characters making up a word or
line.

3.3.2 Noise Reduction
Noise is often a problem in camera-based text imaging; the
input often has much lower resolution that that offered by
scanners, and if the text is skewed, auto-rotation using the
interpolation of the rotation transform alone introduces jagged
edges. Though binarization with thresholding removes some
static due to low resolution, it too can leave text edges jagged
or of improper thickness because the contrast between text
and background has not been captured sharply. To com-
bat these problems, other noise reduction techniques, like
blurring and the hit-miss transform, are often part of the
preprocessing for natural scene OCR systems.

Blurring transforms like the Gaussian blur and morphologi-
cal opening and closing are frequently used to reduce over-
segmentation along edges. These transforms bring the color
values of pixels closer to those of their neighbors, so they can
help assure an averaged view of the contrast along regions of
different color. They can also help relieve noise in the form
of isolated pixels of different color from their surroundings,
but this does result in an averaging of colors in the affected
area into a blob of incorrect color rather than coloring the
isolated pixels the same as their background.

The hit-miss transform is a morphological operation (see
[25]) that can isolate specific patterns for preservation or
removal. Using the hit-miss transform, our noise-reduction
approach finds pixels whose neighborhoods match a known
pattern for noise - perhaps isolated pixels of the wrong fore-
ground/background type, or edges with sawteeth - and fil-
ters them from the target image.

3.4 Related Applications
One commercial OCR/translation application is Linguatec’s
Shoot and Translate. It can translate between six language
pairs but can only be run on a supported high-end device.
Statistics for recognition and translation accuracy are not
available, though the product website shows correct transla-
tions of several signs with skew, perspective distortion, and
improper lighting.

[8], [12], and [28] describe research efforts to produce OCR
and translation applications. Like our current work, these
papers show a strong early focus on accurate text detec-



tion. Using advanced machine-learning techniques for isolat-
ing and recognizing text, these papers report OCR accuracy
from 80% to near 100%. Of particular interest for the fu-
ture is the discussion in [28] of the difficulties in specializing
such systems for translation of public signage; the abbrevi-
ations and grammar of such text seems to preclude effective
translation by systems trained on formal documents.

4. APPLICATION OVERVIEW
The context of our image preprocessing suite is an applica-
tion for mobile devices that allows users to translate text
from camera images. This application is targeted to the
pedestrian tourist who wants to understand informational
or directional road signs in his or her native language. We
describe here a prototype system which has been developed
to test our image preprocessing techniques; it is a future goal
to make this prototype deployable.

We have developed a prototype client program for the An-
droid platform [2]. This client is responsible for allowing the
user to take and review a photo with their device’s built-in
camera, to send the photo to a remote server for processing,
and to receive and display the translation results. If users
desires more narrowed results from the translation service -
for example, they may wish to translate only one of several
street signs captured in the image - or more accuracy given
a noisy image, they may opt to select a smaller region of the
captured image to send to the remote server.

In our prototype system, all image and text processing is
currently done on a remote server. The first processing step
is our image preprocessing suite, which aims to maximize the
accuracy of text recognition so that the translation is con-
ducted on the correct original text. Because an OCR system
performs optimally when given clear, properly-aligned text
as input, the preprocessing suite conducts text detection,
binarization, auto-rotation, and noise reduction. A more
detailed description of the preprocessing implementation is
provided in Section 5.

After preprocessing, the server sends the image to an OCR
engine for recognition. The OCR engine used in this pro-
totype system is Tesseract [27], a platform developed by
HP Labs between 1985 and 1995 and absorbed by Google
in 2006. In 1995 it ranked in the top three OCR systems
participating in the UNLV Test of OCR Accuracy [23], and
when the document text experiments from the UNLV tests
are run on the Tesseract system today it averages over 95%
recognition accuracy. This engine is offered as free and open-
source software under the Apache License 2.0.

Finally, the text extracted by Tesseract is supplied to a
statistical machine translation system. For this prototype
system we intend to use the Moses translation system [3]
trained on the Europarl French and English corpora [15]. A
future goal is to examine this system, in particular its ability
to translate language from road signs when trained on this
or other corpora, more fully.

5. IMAGE PREPROCESSING IMPLEMEN-
TATION

The current focus of our research is the image preprocessing
suite. All parts of this system were implemented in Matlab
using the Image Processing Toolbox for fast morphological
and other image manipulation operations. We provide in
this section an overview of our system and closer analysis of
its major contributions to text detection and auto-rotation.

5.1 System Overview
Our image preprocessing system is composed of three major
parts: text detection and binarization; auto-rotation; and
noise reduction. Figure 1 shows an overview of these pro-
cesses.

The text detection and binarization step uses an edge-based
morphological approach, drawing from the work described
in [10], to identify candidate text regions. Applying the mor-
phological gradient operator to a blurred grayscale version
of the input image extracts strong edges, which are then
grouped and labeled as distinct regions of interest.

Next, these candidate regions are analyzed individually. Text-
like connected components (CCs) are extracted from the re-
gion by preserving the pixels with gray values in the range,
either above or below the global gray-level threshold, judged
to be the region’s foreground. Simple size-based filtering
eliminates from consideration regions that themselves are
too small or large and regions that contain no connected
components of text-like size and dimensions. The remaining
regions are then clustered based on a vector of size and color
features, resulting in a partition of the candidate region set
into a text-like set and a non-text-like set. The text-like set,
recognized as the set to which most median-sized (character-
like) components fall, is preserved.

In the last stage of text detection, we select the minimum
bounding rectangle with a small five pixel buffer on all sides
around the text-like regions. Finally, the morphological edge
groupings for the preserved regions are written to a “final
region image,” and the selected area of the original image is
binarized based on the average preserved foreground range,
weighted by the number of text-like connected components
in each of these regions.

The binarized text selection and its region image then pro-
ceed to the auto-rotation stage. Here, the skew of text lines
is estimated using the slopes of the baselines of the pre-
served regions, and the binarized text image is corrected by
a rotation transformation.

Finally, the noise on text edges that was introduced by
the rotation transformation is reduced using the morpho-
logical hit-miss transform. This transform, a relaxation of
the standard morphological operations that use foreground
patterns, allows us to search for patterns of foreground and
background pixels surrounding single extra or missing pixels
along edges. By detecting these pixels that make up jagged
edges, we aim to smooth lines and curves to their pre-rotated
state.

5.2 Major Contributions
5.2.1 Region Foreground/Background Analysis
Absent from the discussion in [10] is analysis of which con-
nected components are important in each thresholded candi-



Figure 1: An overview of the preprocessing suite.
Regions shaded in blue are adapted from [10], while
regions shaded in gold are new contributions from
this research.

date text region. Ideally, pixels belonging to foreground text
are on one side of the gray-level threshold and background
pixels are on the other side, so we must judge which region
is the foreground before continuing a connected component
analysis.

In our text detection strategy, we determine the foreground
color of a region by tracing its morphologically-grouped outer
edges and determining whether the color just inside the
edges is lighter (higher gray values) or darker (lower gray
values) than the color outside the edges. Based on the as-
sessment of this color, we pick out the elements higher or
lower than the local threshold as foreground pixels. Fore-
ground pixels are then separated into connected components
by Hasan and Karam’s labeling algorithm. Qualitatively, we
have picked out connected components coming from letters,
punctuation, or simple scene elements like single stones or
rivets in signs.

5.2.2 Text Candidate Region Clustering
In order to be more adaptive to the wide range of features of
scene text from public signage, we removed some restrictions
from the text detection approach of [10]. First, we are ap-
plying the morphological edge analysis outside of the lower
bound Hasan and Karam place on image resolution. They
assume input resolution will not be below 9 pixels per mil-
limeter, or around 230 ppi, but the input from a cell phone
camera, webcam or similar portable imaging device regularly
has an image resolution of 72 ppi. Second, we expect text
in our corpora to be shortened or spaced widely for quick
legibility by drivers and pedestrians, so we do not require a
minimum of six character-like connected components to de-
fine a text-like region; rather, we keep regions with at least
two character-like components in consideration.

Because we remove these restrictions, many of the regions
remaining in consideration may actually contain background
elements instead of actual text. As observed during testing
and discussed further in Section 7, we have not found one
set value of any one feature that classifies a region as text
and not background across our test corpus. For this rea-
son we use Weka, a data mining platform developed at the
University of Waikato [9], to cluster the regions still under
consideration based on a vector of fourteen features: the
number of rows in the region; the number of columns in the
region; the region’s area in pixels; the percentage of total im-
age area this region accounts for; the number of connected
components in the region; the percentage of connected com-
ponents in this region considered valid; the average gray
value in the region; the gray-level threshold as determined
by Otsu’s method [22]; whether the foreground is the lighter
or darker side of the threshold; the average gray value in
the foreground range; the standard deviation of gray lev-
els in the foreground range; the average gray value in the
background range; the standard deviation of gray levels in
the background range; and the ratio of foreground pixels
to total pixels in the region. In our prototype system we
use the expectation-maximization or EM algorithm with two
desired clusters; tests using Weka’s other implemented clus-
tering algorithm, the simple K-means algorithm, performed
similarly.

The result of this clustering is a two-set partition which, as



observed during testing and described further in Section 7,
maps closely to a partition between foreground and back-
ground elements. We must then determine which of the
clusters is the one containing foreground elements. Our cur-
rent approach is to see into which of the region clusters the
majority of the valid connected components whose areas (in
pixels) vary from the mean by up to one-quarter of a stan-
dard deviation. This choice assumes that the most text-like
of all the connected components in the image are of near-
mean size and that connected components with sizes far out-
side the mean are not text-like.

Once the text-like cluster is decided, components from the
non-text-like cluster are filtered out of the image. We also
filter out any components whose foreground color range is
not the range shared by the majority of the components; this
filter aims to remove some non-text-like components that
were statistically like the rest of the text-like components.

From the size-based filtering step, we have kept a record
of removed regions judged to have one text-like connected
component. Due to the aforementioned wide letter spacing
in some public signage and low resolution from our input
device, some letters may be isolated or blurred together in
the morphological grouping, but we still want to preserve
their text information. At this point we examine the neigh-
borhood of each component in the text-like cluster and ”pull
in” close discarded components, effectively returning to con-
sideration characters isolated from their original word or im-
portant articles between words.

5.2.3 Skew Estimation
As discussed in Section 3, the approaches to skew estimation
described in [5] and [19] estimate line slope using the cen-
ters of character components. We choose instead to estimate
skew using the baseline of the morphological edge grouping
for a region. The points along the baseline of text, when
morphologically dilated so holes begin to close and edges
draw closer together, are less prone to variations than char-
acter midpoints. Characters with tails hanging below a line
occur infrequently in English and Romance languages (see
[17] for English letter frequencies) so baseline variation will
be minimal, but midpoints can come from letters of multi-
ple sizes - tall letters like k, short letters like m, and letters
with hanging tails like j - and thus can have a fair amount
of variance around the actual skew direction.

For each region, we pick samples points along the baseline
of the edge grouping and eliminate all points whose heights
deviate from that of their left neighbor by more than one
standard deviation from the mean difference between neigh-
boring samples. We then use Matlab’s Curve Fitting Tool-
box to fit the remaining sample points to a linear model and
determine the angle of rotation using the slope of the fit line.

Once the rotation angle has been determined for each region,
we find the mean and standard deviation of the rotation
angles and eliminate all those that deviate from the mean by
more than three-quarters of a standard deviation; this helps
eliminate outliers from irregular edge groupings derived from
non-text. We then find the mean of the remaining rotation
angles and output a black and white text image rotated by
that amount.

6. EXPERIMENTAL METHODS
6.1 Test Corpora
The proposed image preprocessing suite, as implemented in
Matlab, was applied to two test image corpora: a control
corpus of 27 black and white document images, and an ex-
perimental corpus of 62 color scene images containing text
from public signage in the Princeton, New Jersey and Johns
Creek, Georgia areas. For the control corpus, the text candi-
date clustering step (see section 5.2.2) of the text detection
algorithm was omitted, as there was minimal risk of non-
text regions being marked as candidates because the control
images had near uniform background.

All images in the test corpus may be found at our website
for this project, http://www.princeton.edu/˜melmore/. We
show two example images, along with the output produced
from them during preprocessing, as Figures 5 and 6 in the
Appendix of this paper.

All test images were taken with the Cingular 8525’s em-
bedded camera. The medium, or 640x320 pixel, image size
setting was used; image resolution is 72x72 ppi.

6.2 OCR Accuracy Measurement
The text in the original test images and the images resulting
from each stage of the preprocessing suite was recognized
with Tesseract OCR [27].

To determine the accuracy of the recognition, we used the
metric proposed by the Information Science Research Insti-
tute at UNLV for the Fourth Annual Test of OCR Accuracy
[23]. If n is the ground truth number of text characters in
the image, and m is the number of errors, or edit operations
(insert, delete, and substitute) needed to transform the re-
sult from the OCR engine into the actual text in the image,
the accuracy of the recognition is defined as

(n−m)/n (1)

The upper bound on this metric is 100, a perfect recognition;
there is no lower bound, as negative scores are possible when
there are more errors than characters in the ground truth
text of the image.

To calculate the accuracy for each test image, we used the
accuracy program provided in the OCR Frontiers Toolkit,
the companion software to the ISRI’s 1999 book on OCR
[24]. This toolkit is provided with Tesseract OCR to be
used in evaluating one’s build of the Tesseract system.

6.3 Rotation Measurement
To compare with the experimental angle of rotation, the
ground truth angle of rotation for each test image was esti-
mated to within 0.5◦ using GIMP 2.4.5.

7. EXPERIMENTAL RESULTS AND DISCUS-
SION

7.1 OCR Accuracy
OCR accuracy at each step in the preprocessing suite is a
measure of the overall performance of this system. Figure 2
displays the average ISRI accuracy for the control document



Figure 2: Average OCR accuracy on control corpus.

Figure 3: Average OCR accuracy on experimental
corpus.

text corpus, and Figure 3 displays the average accuracy for
the experimental scene text corpus.

For the control corpus, which consists of color images of
black and white documents, OCR applied after the text de-
tection step shows little change in accuracy than when OCR
is applied to the unprocessed input image. The slight dip
in accuracy, from a score of 22.27 to 20.97, is most likely
due to binarization errors reducing the quality of the text in
the image. The highest average accuracy - a score of 52.88,
meaning roughly half the characters in the image are recog-
nized correctly - occurs after the rotation stage. After noise
reduction, the average accuracy score is 49.04, indicating
that noise reduction alters some of the characters that were
recognized correctly in the rotated image.

For the experimental corpus, accuracy scores frequently fall
into the negative range because non-text elements in the
image are falsely recognized as characters, creating noise in
the text output for more errors than there are characters in
the image. Without any preprocessing, the images in our
corpus average an accuracy score of -43.57. All subsequent
steps show an increase in accuracy over no processing, with
the text detection step showing a positive average accuracy
score of 6.37. Because of under- or over-rotation, the auto-
rotation step and the noise reduction step that follows it dip
back into the negative accuracy range with average scores
of -26.82 and -21.34.

There is substantial deviation from the means shown in each
corpus. In the control corpus, we see deviation between 30
and 40 points, which corresponds to small changes in qual-
ity of the input and of the intermediate preprocessing steps
across the corpus. In the experimental corpus, however, we
see much wider ranges of deviation. The deviation of the un-
processed input, which is 141.3 accuracy points above and
below the mean, sheds light on the vast deviation in in-
put image quality in the experimental corpus. A similarly
wide deviation in accuracy scores is propagated through the
preprocessing steps, indicating that the preprocessing suite
performed either rather well or rather poorly on an individ-
ual test image. We hope to explain in subsequent sections
the reasons this deviation in accuracy persists. We focus
on text detection and rotation; discrepancies in noise reduc-
tion accuracy, while more difficult to quantify, are discussed
qualitatively.

7.2 Significant Features in Text Detection
Our text detection scheme relies heavily upon a clustering
phase, which selects the statistically significant features of
the text candidate regions and partitions the set regions
based upon the value of these features. Figure 4 shows
the five features most frequently found to be statistically
significant within a test image. Four of these five features
involve the gray levels of pixels in the image, and the ratio
of foreground-colored pixels to all pixels in a region is sig-
nificant to all 62 images in the experimental corpus. This
is a strong indication that the contrast between foreground
and background and the variance within these two classes
of colors is a significant feature distinguishing text regions
from non-text regions.

On the other hand, it may be beneficial to seek other no-



Figure 4: The top five statistically significant fea-
tures detected in test images.

tions of what is text for such a text detection scheme to be
effective. It would be ideal to strike upon a small set of
significant features that accurately classify text, but in our
experiments all fourteen features considered for candidate
regions are selected as statistically significant for at least
four images in the corpus. This leads to two conclusions:
either scene images are too complex to have a small set of
text-distinguishing features, or there are some features that
we have not examined that do a better job of partitioning
the region set into text and non-text in all cases. Given our
initial results, a viable next step would be to apply machine
learning algorithms to a larger corpus of images to see what
is learned and how difficult current learning techniques are
on such a complex corpus.

A final consideration is the choice of which of the two clusters
determined by our feature analysis contains text. A wrong
choice could lead to a final region image containing mostly
or only non-text regions; while this obviously lowers the ac-
curacy of text detection, it also bears upon the estimated
angle of rotation in the auto-rotation stage. We observed
a significant percentage of “wrong choices” over our corpus,
and many of these choices do result in the introduction of
background noise in the OCR output as well as wild devia-
tion of the estimated angle of rotation from the actual angle
of rotation. A future discovery of threshold values for the
features that classify text versus non-text, or an improved
scheme for determining into which cluster the most “text-
like” of candidate regions’ components fall, would likely re-
duce the wide deviation from the mean of OCR accuracy
and improve the performance of each preprocessing step.

7.3 Text Detection Accuracy
The accuracy of the text detection step is crucial to system
performance; if background noise is improperly classified as
text, it remains in the image for the rotation and preprocess-
ing steps. It is ideal, then, to partition the text candidates
in the image clearly into text and non-text by the end of

this procedure.

There are two components to accuracy in text detection:
how much actual text is contained in the final bounding box,
and how much non-text is contained in the final bounding
box. Our findings are summarized in Table 1.

Ideally, the percentage of characters outside the bounding
box should be 0. The low mean, 7.87%, for this metric
within our experimental corpus indicates that our text de-
tection scheme to be slightly strict at times. Though the
scheme assigned a bounding box containing all characters
to most images in the corpus, it was “too strict” when the
text-like cluster was poorly selected. As discussed above,
better selection of which candidate region cluster contains
text may alleviate this problem.

As with every classification problem, we are concerned with
false positive and false negative classifications. In this study,
false positives are candidate regions that do not actually
contain text but are believed by our code to contain text,
and false negatives are candidate regions that contain text
but are believed by our code to not contain text. We con-
sider two metrics based on text region classifications: how
many regions out of those believed to contain text are false
positives, and how many regions out of those that actually
contain text are false negatives.

Our experimental results show similar values for each met-
ric: on average, about 30% of the final region image is com-
posed of non-text regions, and about 30% of text regions
get excluded from the final region image. As evidenced by
the wide standard deviation, however, this is another case of
some test images performing very well and some performing
very poorly. Though the feature-based clustering of candi-
date regions needs improvement in itself, it is more often the
incorrect selection of the text-like cluster that leads to high
false positive and false negative rates.

7.4 Rotation Accuracy
The accuracy of the rotation phase is highly dependent on
the accuracy of the text detection phase: the angle of rota-
tion is estimated based on the slope of regions in the final
region image, and if non-text regions are included in the fi-
nal region image, the slopes captured may not match the
slopes of actual text components.

Our control results show the rotation scheme to be accurate
when the text detection process makes correct text classi-
fications. Across 27 control images whose actual degrees
of rotation range from 41.5◦ counterclockwise to 46◦ clock-
wise, the average magnitude of experimental error is 1.23◦.
Judging by a standard deviation from this mean of 2.60◦,
our rotation scheme is not greatly affected by differences in
quality of the regions kept or the binarized image when there
is no noisy background hindering text classification.

As discussed in sections 7.2 and 7.3, there are still many
problems confounding the text detection stage, so rotations
on improperly detected text are expectedly poor. Over the
62 test images whose actual degrees of rotation range from
10.5◦ counterclockwise to 22◦ clockwise, there is a 7.1◦ mean
error with a standard deviation of 9.86◦. If text detection



Table 1: Accuracy metrics for text detection
Metric Mean Standard Deviation

(text characters outside bounding box) / (total characters) 0.0787 0.1513
(false positive text region classifications) / (total positives) 0.3047 0.3080

(false negative text region classifications) / (total text regions) 0.3202 0.3317

on our experimental corpus also selected only and all re-
gions containing text and binarized text and non-text pixels
properly, we expect results would be similar to those of the
control corpus.

7.5 Noise Reduction Analysis
The accuracy of the noise reduction step is a bit more diffi-
cult to gauge; on the control corpus, it results in a reduction
of OCR accuracy from that of the rotation stage, and on
the experimental corpus it results in a slight increase in ac-
curacy. Qualitatively, we observe noise reduction helping
the character recognition process in some regions of the im-
age and hindering in others. Part (j) of Figure 6 shows one
example of this phenomenon; the larger letters in the im-
age are negatively affected, while the smaller letters become
more accurately recognized. This sort of isolated improve-
ment lends itself to the future integration of a translation
system; our preprocessing suite could communicate with the
translation dictionary to see when words in the original lan-
guage are recognized at each step, ignoring any deterioration
of already-recognized words. More research is necessary to
judge the effect our noise reduction scheme, consisting of
removals and additions of isolated pixels on edges, has on
the character recognition process used by Tesseract and by
other available OCR engines.

8. CONCLUSIONS AND FUTURE WORK
This paper has presented an image preprocessing system for
use in machine recognition of text in natural scene images.
Of the three steps of this preprocessing suite - text detection,
auto-rotation, and noise reduction - text detection remains
the most difficult problem. The original criteria, size ratios
and presence of edges, used in Hasan and Karam’s morpho-
logical strategy [10] cannot discern all types of background
objects in natural scene images of public signage, and we
have not found a more discerning criterion among the fea-
tures used in the text candidate clustering of our image cor-
pus. The proposed auto-rotation scheme has proved to be
accurate when the angle of rotation is estimated using only
text regions, and the noise reduction scheme often reveals
better recognition of small characters after larger ones have
been recognized in earlier steps, so it is up to improvements
in the text detection phase to result in improvements of the
entire system’s text recognition accuracy.

As discussed in the presentation of results, an apparent next
step is to attempt more sophisticated means of measuring
what qualities define text in scene images. It could be of
benefit to examine further signal processing techniques for
edge detection and pattern recognition, and exploring ma-
chine learning techniques for extracting text-like qualities for
use in classification also seems promising. A final venue for
improving our text detection accuracy would be to exam-
ine the techniques employed by the open-source OCR en-
gine Tesseract to see how our approach could cater to its

strengths.

The proposed preprocessing suite is by no means complete.
One future challenge is the integration of other preprocessing
steps such as perspective correction, light correction, and
better enhancement of letter shapes for increased legibility.
While exploring more ways to increase the quality of images
provided to the OCR engine, it is another future goal to
examine which preprocessing steps may be done on a user’s
mobile device. It would be ideal if dependence on a remote
mathematical processing server were eliminated and a user
could translate scene text regardless of network availability.

Finally, we hope to make our prototype mobile applica-
tion for scene text translation deployable. This requires
further research into the capabilities of the Android plat-
form or other development environments and integration of
a machine translator to the pre- and post-processing sys-
tems. Our initial results show that intermediate translation
of OCR output could help our system learn when words
are correctly recognized or help correct a poorly-recognized
word knowing its context. This and all future steps will help
in our goal of designing a translation system that is accurate,
adaptive, and above all general.

9. ACKNOWLEDGMENTS
We would like to thank Princeton University and the Com-
puting Research Association’s Distributed Mentor Project
(DMP) for funding and technical support for this work.

10. REFERENCES
[1] GOCR. http://jocr.sourceforge.net/index.html.

[2] Google Android. http://code.google.com/android/.

[3] Moses. http://www.statmt.org/moses/.

[4] OCRAD.
http://www.gnu.org/software/ocrad/ocrad.html.

[5] B. T. Ávila and R. D. Lins. A fast orientation and
skew detection algorithm for monochromatic
document images. In Proc. 2005 ACM Symposium
Document Engineering, pages 118–126, Nov. 2005.

[6] W. Bieniecki, S. Grabowski, and W. Rozenberg. Image
preprocessing for improving OCR accuracy. In Proc.
Int. Conf. Perspective Technologies in MEMS Design
2007, pages 75–80, May 2007.

[7] J. F. Canny. A computational approach to edge
detection. IEEE Trans. Pattern Analysis and Machine
Intelligence, pages 679–698, 1986.

[8] S. Ferreira, V. Garin, and B. Gosselin. A text
detection technique applied in the framework of a
mobile camera-based application. In Proc. First Int.
Workshop Camera-Based Document Analysis and
Recognition, pages 133–139, Aug. 2005.

[9] E. Frank and I. H. Witten. Data Mining: Practical
Machine Learning Tools and Techniques (Second



Edition). Morgan Kaufman, June 2005.

[10] Y. M. Y. Hasan and L. J. Karam. Morphological text
extraction from images. IEEE Trans. Image
Processing, 9:1978–1983, Nov. 2000.

[11] H. Hase, T. Shinokawa, M. Yoneda, M. Sakai, and
H. Maruyama. Character string extraction by
multi-stage relaxation. In Proc. Fourth Int. Conf,
Document Analysis and Recognition, pages 298–302,
Aug. 1997.

[12] L. Jagannathan and C. V. Jawahar. Crosslingual
access of textual information using camera phones. In
Proc. Int. Conf. Cognition and Recognition, pages
655–660, Dec. 2005.

[13] K. Jung, K. I. Kim, and A. K. Jain. Text information
extraction in images and video: A survey. Pattern
Recognition, 37:977–997, May 2004.

[14] P. Kim. Automatic text location in complex color
images using local color quantization. In Proc. IEEE
Region 10 Conference, volume 1, pages 629–632, 1999.

[15] P. Koehn. Europarl: A parallel corpus for statistical
machine translation. In Proc. MT Summit X, 2005.

[16] J. Liang, D. Doermann, and H. Li. Camera-based
analysis of text and documents: a survey. Int. Journal
Document Analysis and Recognition, 7:88–104, Jul.
2005.

[17] T. Linton. English letter frequencies.
http://pages.central.edu/emp/lintont/classes/spring01/
cryptography/letterfreq.html.

[18] C. Liu, C. Wang, and L. Dai. Lecture Notes in
Computer Science, chapter Text detection in images
based on color texture features, pages 40–48. Springer
Berlin/Heidelberg, 2005.

[19] S. Messelodi and C. M. Modena. Automatic
identification and skew estimation of text lines in real
scene images. Pattern Recognition, 32:791–810, May
1999.

[20] S. Mori, C. Y. Suen, and K. Yamamoto. Historical
review of OCR research and development. Proc.
IEEE, 80:1029–1058, Jul. 1992.

[21] W. Niblack. An Introduction to Digital Image
Processing. Prentice/Hall International, Englewood
Cliffs, NJ, 1986.

[22] N. Otsu. A threshold selection method from gray-level
histograms. IEEE Trans. Systems, Man, and
Cybernetics, 9:62–66, Jan. 1979.

[23] S. Rice, F. Jenkins, and T. Nartker. The fourth annual
test of OCR accuracy. Technical Report 95-03,
Information Science Research Institute, University of
Nevada, Las Vegas, Jul. 1995.

[24] S. V. Rice, G. Nagy, and T. A. Nartker. Optical
Character Recognition: An Illustrated Guide to the
Frontier. Kluwer Academic Publishers, Apr. 1999.

[25] J. Serra. Image Analysis and Mathematical
Morphology. Academic Press, New York, 1982.

[26] C. S. Shin, K. I. Kim, M. H. Park, and H. J. Kim.
Support vector machine-based text detection in digital
video. In Proc. IEEE Signal Processing Society
Workshop, volume 2, pages 634–641, Dec. 2000.

[27] R. Smith. An overview of the Tesseract OCR engine.
In Proc. Ninth Annual Conference on Document
Analysis and Recognition, volume 2, pages 23–26, Sep.

2007.

[28] J. Yang, J. Gao, Y. Zhang, X. Chen, and A. Waibel.
An automatic sign recognition and translation system.
In Proc. Workshop Perceptive User Interfaces, pages
1–8, Nov. 2001.

APPENDIX
A. SAMPLE PREPROCESSING RESULTS
A.1 Control Corpus
Figure 5 shows the image and OCR output from the different
stages of the image preprocessing suite when run on an input
image from the control corpus.

A.2 Experimental Corpus
Figure 6 shows the image and OCR output from the different
stages of the image preprocessing suite when run on an input
image from the experimental corpus.



Figure 5: Preprocessing output for one image in the control document text corpus. (a) original image, (b)
edge grouping, (c) OCR output for (a), (d) binarized text candidate image, (e) final region image for text
candidates, (f) OCR output for (d), (g) autorotated text image, (h) OCR output for (g), (i) noise reduced
image, (j) OCR output for (i)



Figure 6: Preprocessing output for one image in the experimental scene text corpus. (a) original image, (b)
edge grouping, (c) OCR output for (a), (d) binarized text candidate image, (e) final region image for text
candidates, (f) OCR output for (d), (g) autorotated text image, (h) OCR output for (g), (i) noise reduced
image, (j) OCR output for (i)


