
Investigating Data Models for Automatically Generating Tests for Web
Applications

DREU 2009 Final Report

Kathryn Baldwin
Computer and Information Sciences

University of Delaware
Newark, DE USA

Camille Cobb, Caroline Hopkins, Sara Sprenkle
Computer Science

Washington & Lee University
Lexington, VA

Lori Pollock
Computer and Information Sciences

University of Delaware
Newark DE 19716

Abstract

Web applications must be dependable as the number and
popularity of web applications increases, and people be-
come more dependent on them. Web applications are diffi-
cult and expensive to test because of the large input space
and frequent changes. Thus, their characteristics demand
an efficient and effective way of automating the test case
generation process. Current approaches to automatic test
case generation for web applications do not attain all the
goals of representing user behavior, maintaining good code
coverage, and reducing the number of test cases. This
research is based on Sant et al.’s user-session-based test
case generation approach, which applies statistical lan-
guage learning algorithms to create control and data mod-
els, where a control model represents the possible URL se-
quences and the data model represents the possible param-
eter values. Through analyzing user sessions, we identify
factors that impact values in user sessions, and use these
results to develop a set of data models for automatic test
case generation.

1 Introduction

Web applications are becoming increasingly common,
and people are becoming more and more dependent on these
applications to accomplish tasks such as managing money
and buying goods. It is therefore imperative that web appli-
cations work properly and consistently, which means they
must be thoroughly tested; however, testing web applica-
tions is difficult and expensive.

One approach to making the testing of web applications
cheaper and easier is to automate the testing process. Al-
though this approach is promising, current automated test-
ing methods are not efficient or accurate enough.

Previous research has examined several approaches to
generating test cases for web applications including spec-
ification based testing, concolic testing, and user session
based testing. Both specification based testing and con-
colic testing involve the use white-box-based test cases.
Specification-based testing was an early approach to gen-
erating test cases for web applications. Because it focuses
mainly on static pages and it is unable to handle dynamic
components of modern web applications. Concolic test-
ing involves the combination of concrete and symbolic ex-
ecution to generate white-box-based test cases. These ap-
proaches advanced the state of the art; however, they failed
to represent real user behavior in web applications.

A promising approach that is more representative of user
behavior is user session based testing. User session based
testing records actual user accesses to older versions of the
application and parses them into user sessions, which are
then used as test cases. While user session based testing
is inexpensive and creates test cases that are representative
of actual users, it generates too many test cases, many of
which are redundant.

Our research focuses on maintaining benefits of user ses-
sion based testing while improving upon the current limita-
tions with redundancy of test cases and representativeness
of users. Our goals are to create test cases that are 1) ef-
fective in terms of failure detection and code coverage 2)
representative of users and 3) cost effective to generate. We
base our approach on work by Sant et al. [14].

Sant et al. [14] have done work in user-representative au-
tomated test case generation. They proposed generating test
cases using a model of user sessions that requires less space
than the original user sessions. The model has two parts: a
control modelthat represents a user’s navigation through a
web application as a sequence of URL requests and adata
modelthat represents the user’s parameter values associated
with these requests.

Our research group proposed modularizing control mod-
els and data models and explored control models in depth
in previous work. This paper focuses on data models. A
challenge with creating data models is how to effectively
represent user data (e.g., what and how much information
to model) without requiring exorbitant amounts of space.
A naiive approach is to generate random values, which re-
quires very little space and could expose errors but is not
representative of users’ values. At the other extreme, it is
not feasible for an automated test case generator to generate
all possible combinations of values from user sessions.

To develop a data model efficient in both time and space
that is representative of how users access the web applica-
tion, we sought to identify factors that affect parameter val-
ues. We mined the user sessions for several types of infor-
mation, based on our intuition about what we expected to
be good potential predictors of values in terms of user rep-
resentativeness. Based on these predictors, we created data
models.

We then evaluate these data models to determine which
models are best for which types of applications and com-
pare them with capture-replay of user sessions. We must
take into account both the costs of the data models and the
benefits of their results. For the costs we will judge a data
model by the amount of time it takes to generate test cases
and the amount of space the test suite and the data model
require. After looking at the costs we will want to see if the
benefits will out weigh them. We will look at the results in
terms of code coverage, fault detection, and the user rep-
resentation. The important factor will be if these new data
models actually improve upon the old ones.

The main contributions of this paper are

• potential predictors of parameter values

• scripts to mine useful information about user behavior

• analysis of user-behavior information to guide creation
of data models

• set of data models

• results and conclusions from evaluating data models

2 Test Generation Process

Figure 1 shows an overview of the test-case generation
process for web applications that we are focusing on. The

Control model specification
(n-gram and representation of

request)

Data model specification

Template generation criteria
(traversal, #templates)

Data Model

Intra-session
control model

User Sessions

Test-case
templates

suite

Test suite

Intra-session
control flow

analyzer

Test-case
template
generator

User
session

parameter
analyzer

Test-case
generator

Figure 1. The Test Case Generation Process

test-case generation process begins with logs of user inter-
actions with a web application, then builds control and data
models, which generate test cases for the web application.
Broadly defined, a web application is a set of web pages and
components that form a system in which user input (naviga-
tion and data input) affects the system’s state. Users inter-
act with a web application using a browser, making requests
over a network using HTTP. When a user’s browser trans-
mits an HTTP request to a web application, the application
produces an appropriate response, typically an HTML doc-
ument that the browser displays. The response can be either
static, in which case the content is the same for all users, or
dynamic such that its content may depend on user input or
application state.

Before the test-case generation process shown in Fig-
ure 1 begins, the user accesses are parsed and segmented
to create user sessions. Eachuser sessionis a sequence of
user requests in the form of base requests and name-value
pairs. When cookies are available, we use cookies to gener-
ate user sessions. Otherwise, we say a user session begins
when a request from a new Internet Protocol (IP) address
arrives at the server and ends when the user leaves the web
site or the session times out. We consider a 45 minute gap
between two requests from a user to be equivalent to a ses-
sion timing out [15].

From a set of user sessions and a control model speci-
fication, theintra-session control flow analyzerconstructs
an intra-session control model. Thetest-case template ana-
lyzeruses the control model and template criteria to produce
a set of test-case templates.

Meanwhile, the user sessions are also analyzed by the
user session analyzer to create an intra-session data model.
From here, the test case templates and the data model are
used by the test case generator to output a set of test cases—
the test suite. The generator makes these test cases by as-
signing the values for parameters within each template, and
these values are determined by the data models.

Figure 2. Process of Assigning Parameter
Values to a Template

In previous work, a control model was created that
looked at a URL’s resource with ordered parameter names.
This was determined to be a useful model because it pro-
vided more coverage information than only the URL’s re-
source by itself. The other main contributions of previous
work were that after analyzing test casetemplates(made
from the control model), they proposed a practical way to
use test case templates. This allows a tester to a.) more eas-
ily tune parameters to make sure the resulting test suite can
meet the URL-based guarantees with lower costs. b.) re-
duce the size of template suites (which reduces redundancy)
c.) apply multiple data models to a set of high URL+name
coverage test case templates.

Figure 2 shows an example template and using a data
model to assign values to the parameter values. The data
models we propose in this paper use this approach.

3 Exploring Data Models

In this paper, we focus on the data models. Many differ-
ent combinations of parameter values can be plugged into
the same template, and the various combinations may cause
the resulting request to execute different code.

3.1 Previous Work

In previous research, Sant et al. [14] developed the
Simple andAdvanced data models.Simple is based
on the frequency of sets of parameter name/value combina-
tions for the current resource, whereasAdvanced depends
on the current resource and the previous request and its “im-
portant” parameters.

Table 1 serves as an example of the probability table
that Simpleis based on. The left column contains the
resource and set of parameter values found in the user
sessions for a bookstore application, the middle column
accounts for some of the sets of parameter values asso-
ciated with the left column, and the right column con-
tains the percentage of time the set of parameter values
occured in the user sessions, given that resource and pa-
rameter names. Looking at the first row, for the re-
sourceBookstore/BookDetail.jspwith the param-
eter namesauthor, category id, and item id,
Simplewould select the set of parameter valuessprenkle,
cis, 28 two-thirds of the time and valueshopkins, cis, 24
one-third of the time.
Advanced uses a similar table toSimple, but also

uses the previous request and its “important parameters” as
a predictor of values. Sant et al. consider “important pa-
rameters” to be parameters that remain the same across two
requests.

While Sant et al.’s results were promising, there may be
other information that can be used to model the data values
more closely.

3.2 Our Methodology

To guide us in developing new data models, we first con-
sidered what factors may affect parameter data values. To
identify these factors, we used our intuition about web ap-
plications and analyzed user sessions from four representa-
tive web application. After identifying factors, we devel-
oped data models based on these factors.

3.3 Factors That Affect Parameter Values

We analyzed the user sessions and identified three
classes of factors that affect parameter values:

Parameter Interactions. We analyzed how parameters
depend on each other. Sant et al. had looked at the probabil-
ity of parameters as a set within one request but parameters
may be related in other ways.

History. History provides context for a user’s behavior. If
a user has done something before how likely are they to do it
again? When a user keeps going back to a certain page, does
that mean the page and its parameters are more important or
less? Why does a user revisit a page?

User Roles. Users often have specific roles in an appli-
cation or a specific purpose when using an application. A
user’s intent can change, which may have an affect on the
parameter values.

Given Resource and Parameter Names Sets of Parameter Values Probability
Bookstore/BookDetail.jsp –author–category id–item id hopkins, cis, 24 33.3%

sprenkle, cis, 28 66.6%
Bookstore/BookDetails.jsp —formAction—item id—rating update, 24, 3 25%

update, 28, 5, 75%

Table 1. Example of Simple’s probability table

All of these intuitions focused us more on user behavior
and how that will affect the assignment of the parameter
values. From these results, we developed new data models
and a user-role specific approach to generating test cases, as
described in the remainder of this section.

3.4 Data Models

Based on our analysis described in the previous section,
we developed two main types of data models, based on the
information they use as predictors:parameter-interaction-
based andhistory-based. These predictors can also be com-
bined to createhybrid models.

3.4.1 Overview of Data Models

Our data models follow the same process as Sant et al.’s.
The role of the data model in the test case generator process
is to provide the probabilities used by the test case generator
to assign values to the parameters. An example probability
table forSimple is in Table 1. A probability table accounts
for what factor you are looking at, the possible values, and
the percent probability that those values will occur, based
on the user sessions. The data model will then select from
those weighted values and assign them to their correspond-
ing parameters. Depending on the data model, different fac-
tors are accounted for and therefore different test cases are
generated.

3.4.2 Parameter Interactions

Through our analysis of user sessions, we found that there
are different types of parameter interactions within a user
session. Parameter interactionsare how one parameter
name and value could relate to another parameter name and
value. These interactions can occur within one request or
multiple requests.

Sant et al’sSimpleused the set dependentparameter
interaction. A set dependent interaction is the relationship
between the entire group of parameters with a specific re-
source. A pro of usingSimpleis: user representativeness,
(the set of values are what users actually used). Where as a
con is that it is possible to have different combinations than
the sets the users had. Using at otherparameter interactions
can help represent these other possibilities.

Broadly defined, the different interactions range from
parameter indepedency toSimple’s parameter set depen-

dency. By exploring all types of interactions we hope to
ascertain what the “important” parameters are.

From there we found how often each interaction occured
and if there was a pattern to the values. From these patterns
we formed two hypotheses for new data models.

SinceSimplecovered one end of the spectrum, we de-
cided to build the data model for the other end. We built
theIndependent data model to examine the indepeden-
cies of parameters.Independent looks at each parame-
ter name and its specific frequency to decide the parameter
value. A pro ofIndependent are: new combinations are
possible that were not in the set. A con ofIndependent
is that some of the new combinations it comes up with may
not make sense. For exampleIndependent may assign
the values of a username and a password that do not actually
go together.

Now that both ends of theparameter interactionspec-
trum were formed we chose to build a model that would
use an interaction from the middle of the range. The in-
teraction we used isparam pair depedencies. We noticed
throughout user sessions that for a specific request, one pa-
rameter’s value would affect another parameter’s value. We
called these pairings parameter couples. An example of this
that enforced our idea was from the Course Project Manager
(CPM) application. In CPM there were two types of users a
grader and a group of students. A grader is a professor who
is linked to a specific course. The grader parameter value
would then determine the course parameter’s value. This
is an example of a coupled param object where the grader
is the effector parameter and the course is the affected pa-
rameter. To create our data model based on this informa-
tion we made a class that creates these coupled parameter
objects with their percent value of occurance. We named
this ourCoupling data model. Since coupling is not al-
ways used by parameters we did have to inherit from the
Independent data model. When there was no pair de-
pendency the values were assigned based on the parameter
independence.

One of the challenges behind the coupling data model
was finding the strongest effector parameter.Coupling
organized each line of the template based on the coupling
strength of parameter pairs. We then assigned the first pa-
rameter a value fromIndependent and used the resource
and that first parameter name and value to couple with the
next parameter. The value would be chosen for the next
parameter based on this. After chosing that value we would

move on to the next strongest couple and repeat the process.
When we were finished we returned a list of the parameter
objects.

A pro of Coupling was similar toIndependent
because new combinations were formed, but also more
parts of theparameter interactionspectrum were repre-
sented. A con ofCoupling is that it may revert back to
Independent too often.

Along with theseparameter interactionswe would like
to explore other possible relations. For example: are any
parameters required? Instead of coupling can we use other
subsets of parameters? We feel that if we can create data
models to represent more of our spectrum we will be able
to achieve maximum code coverage, while maintinging our
other goals.

3.4.3 History

A second potential predictor is history because there is of-
ten a relationship between where a user has been and what
they have done in a web application. By “history”, we are
referring to the previous requests in a user session, includ-
ing the visited resources and the data associated with those
requests.

We hypothesized that the previous resource would have
an effect on the parameters of the current resource that the
user accesses. This can provide highly useful because if we
know the previous actions of a user, we can learn informa-
tion about her possible behavior in the future.

Take as an example an e-commerce page, where you can
shop for items online. A user may access an item’s informa-
tion page and from there they may go to a “Shopping Cart”
page to buy the item they are interested in. Typically, buying
a product using a shopping cart requires several steps. If we
know that purchasing an item through “Shopping Cart” has
a number of steps to it and that the step is a parameter for
the page, then we can determine the step number the user is
on (which is also the parameter value for “step”), using the
previous resource.

If a user was previously on the item page and is now on
the “Shopping Cart” page, we then know that the param-
eterstep for the current page is likely to have the value
“1”. It is unlikely for a user to be on step “2” of the pur-
chasing process if they just came from the item page; you
cannot get to “Step 2” unless you have completed “Step 1”,
in which case the previous resource would instead also be
the “Shopping Cart” page. In similar ways, other parame-
ters could be determined from knowing other previous and
current resources.

A data model could use minimum history (i.e., no his-
tory) or complete history (i.e., all requests within a session)
or something in between the two extremes. The advantages
to no history are that costs are lowered with respect to the

amount of information that must be stored. However, no
history would predict less-realistic values and would not be
a very good representation of a user’s behavior. On the other
hand, looking at a complete history would ensure good rep-
resentation (since every previous resource and current re-
source would be examined) yet would be very expensive in
terms of the amount of information required. Since there
are tradeoffs between the approaches, we implement a data
model and will compare it with data models that use various
amounts of history as predictors.

We implemented a data model that we callTwo Gram.
Two Gram uses slightly less history than Sant et al’s
Advancedmodel, using the previous resource, the current
resource, and the current resource parameters.Two Gram
uses the user sessions’ frequencies of the values for the cur-
rent parameters, given the current resource and the previous
resource.

In the future it would be possible to make data models
to examine more than simply the most-recent previous re-
source; perhaps instead we could include a couple of previ-
ous resources. This would be a good method to try because
it would increase the amount of user representation. It might
also be possible to do more work with combining both the
history and the parameter interaction predictors. Perhapsby
combining these two items we could learn even more infor-
mation about the user’s behavior.

3.4.4 Combining Data Models

After building data models from one factor: eitherhistory
or parameter interactions, we felt that a step further was
possible. Our idea was to use both factors to create a new
data model. These would be called hybrid data models and
would hopefully expand our range of results. Having a data
model that is influenced by two different factors is more
likely to represent users because users are influenced by
multiple factors.

A hybrid model that we looked at wasconsistencyof a
parameter over two requests in a user session. There were
two ideas behind this hypothesis. The first was that if a
user is constantly inputting/using the same value it must be
a more important value. The second is that if a user is try-
ing to do something specific it would make sense for the
parameter name and value to carry through. For example,
if a user is searching for a specific book than the id for that
book will be put in as a parameter value over and over again.
Bothhistoryandparameter interactionsinfluenced the data
model.
Consistent takes the first request and assigns pa-

rameter values usingIndependent. For subsequent re-
quests,Consistent decides if the value should be con-
sistent by its probability tables. If it is, then the value carries
through from the previous request, otherwise revert back to

Independent.
Consistencylooks at the impact of two different factors,

but it is also possible to look at the impact of two different
models run together. For future research we plan to run both
Coupling andConsistent together. By using multiple
data models at once we are beginning to look at all sides of
why a value gets assigned and how that represents the user.
The more we are able to mirror the user the better our data
models can be.

3.5 User-Specific Models

We observed that in the existing models by Sant et
al. [14] all user sessions are treated equally; however, in
many applications, there are intuitive groups of users and
different ways that users use the application. In a bookstore
application like Amazon.com, for example, some users sign
in to buy a book, and others never sign in. Users who have
signed in have different privileges than those who have not
signed in. Our intuition was that because of these different
access privileges and intentions for using the application,
the patterns in the user values will also be different.

By partitioning the user sessions into groups, we can
create models that are more tailored to these groups’ be-
haviors. We refer to these tailored models asuser-specific
models. Beyond improving user representativeness, we also
gain control over what types of test cases we generate be-
cause we can produce more test cases for the types of users
that we are most concerned with or who are likely to access
parts of the application that we are focused on testing. For
example, on applications where users have very few options
without signing in (e.g., course management applications
like Sakai and BlackBoard), we could generate fewer test
cases for users sessions without a login, which will help us
be more effective in testing.

We have identified several ways to partition user ses-
sions: individual user sessions, user sessions grouped by
user, user sessions grouped based on access privileges, and
the entire set of user sessions (the original approach). Indi-
vidual user sessions are the most partitioned and the entire
set of user sessions is not actually partitioned at all. We
use these partitioned subsets of user sessions as the input
in Figure 1. There are tradeoffs between these partitioning
approaches. Using each individual user session as the input
results in test cases that are very representative of the orig-
inal user sessions but takes up a lot of space and time and
may limit the variety of test cases. However, some degree
of partitioning may be beneficial.

For example, in a course management application, some
users are instructors and others are students. Members of
these groups have access only to certain pages; however,
there are also a significant number of shared pages (i.e.,
pages that both students and instructors have access to)—

for example help pages and pages that do not require log-
ging in. Furthermore, the likelihood of a particular param-
eter value for a given page could be significantly different
for different types of users. The same kinds of differences
can be seen between users as opposed to groups of users.

Grouping Users. To group user sessions into users, we
searched the parameter names for each request in a session
for password and then looked for the username parameter in
the other parameters in the same request. The application-
specific names for password and username were known and
hard-coded into our script. Some sessions had no logins
and some sessions had multiple logins (e.g., from a user
mistyping their username); these sessions were considered
as special cases.

Future work includes automatically determining the
username and password parameters, but the information is
not difficult for the application developer to provide. Cur-
rently, we ignore the sessions that contain multiple user-
names; in the future, we could use natural-language tech-
niques to determine if the root cause was a typo or we could
split the session into a separate session for each username.
For applications that do not require a password, we would
have to create a different approach to group users, e.g., us-
ing the requester’s IP address as a heuristic.

Grouping Users By Roles. For each application with dis-
tinct user roles, we identified the pages associated with each
user role. For each specific user, we categorized the user on
the type of pages they accessed. Sometimes a user accessed
pages for more than one type of user. In these cases, we
manually looked at the session and categorized it based on
the relative number of requests to each page type.

To ensure that grouping user sessions would generate
significantly different test cases from non-grouped sessions,
we graphed the data about the frequency of resource ac-
cesses and parameter names and values from each identi-
fied user or user role and from the entire set of user sessions
against each other. We saw that these values were very dif-
ferent and concluded that partitioning user sessions in this
way could be useful.

Future Work includes grouping user sessions based on
the intentions of the user (e.g. users on Amazon.com who
are looking for a specific book versus simply browsing).

4 Evaluation

We designed an evaluation plan to examine some of the
remaining questions about Data Models and User Specific
Models. Specifically our plan seeks to and the following
questions:

Since the code coverage is an important part of testing
any application and important for fault detection we want to

find the answers to: What code coverage is achievable with
different Data Models? How does the User Specific Model
influence code coverage? These conclusions will help to
answer the questions: Which Data Model and/or User Spe-
cific Model should be used for the most effective test case
suites?

It is necessary to know the costs of our different Data
Models and User Specific Model to be able to recommend
their use. To find the costs we need to answer these ques-
tions: How long does it take the test case generator to run
the data model? What are the sizes of test suites generated.
What are the sizes of the templates and tables influenced by
the user specific model?

One of the goals was to better represent users. To inves-
tigate the representation of users we will need to answer the
questions how do our results mirror user behavior?

4.1 Variables and Measures

The independent variables are the Data Model(what
choses the values for the parameters in the test case gen-
eration process) and the User specific Model(groups user
sessions by type and therefore influences both the Control
Model templates and the tables used by the Data Model)
We have created #(FILL IN) of Data Models that we can
chose from and we have found #(FILL IN) of different user
types for the User Specific Model. The dependent variables
are the effectiveness of both the Data Models and the User
Specific Models; the number of test suites to reach a de-
sired code coverage level; the size of the resultant test-case
templates for different User Specific Models, measured by
number of requests, the redundancy of the test cases; and
the cost of the Data Model and the User Specific model,
measured by their efficieny.

4.2 Methodology

Our experiment consists of three phases: (1) generating
Data Models from analysis of user sessions, (2) generating
test-case templates from the user specific model, (3) analyz-
ing the test case suites. We implemented steps (1) and (2)
in figure 1 primarily in python. Step (3) is our output.

Generating Data Models. From our data mining we cre-
ated new Data Models that were used in the test case gen-
eration process. For each data model we measured (1) the
time it took to run in the test case generator, (2) the size of
the data model, in terms of the size of the probability tables
it uses and the number of tables.

Generating test-case tempalates. To account for user
role we have created new templates using our User Specific
model. To measure these templates we compared them to
previous templates: accounting for the size, user represen-
tation and new combinations.

App Classes Methods Statements NCLOC
Masplas 9 22 441 999
Book 11 330 5347 7781
CPM 76 174 7031 8947
DSpace 274 1453 27136 49513

Table 2. Subject Application Characteristics

Analyzing test case suites. For all of the templates and
our new data models we have created suites of test cases.
These test cases are our output and the final aspect we will
evaluate. We will measure these by checking for code cov-
erage, fault detection, and representation of users. We will
also check for the size of these test cases. To know if we
have improved on the process we will compare this new
output with the previous research output.

4.3 Subjects

In this paper, we target web applications written in Java
using servlets and JSPs. The applications consist of a back-
end data store, a Web server, and a client browser. Since
our user-session-based testing techniques are language-
independent—requiring user sessions but not source code
for testing, our techniques can be easily extended to other
web technologies.

We created 8 subject user-session sets from user requests
to four publicly deployed applications. The applications
were of varying sizes (1K-50K non-commented lines of
code), technologies, and representative web application ac-
tivities and usages: a conference website (Masplas); an e-
commerce bookstore (Book) [7]; a course project manager
(CPM); and a customized digital library (DSpace) [5]. Book
is the same application used in Sant et al.’s evaluation [14].
Table 2 summarizes the applications’ code characteristics.

Book was the only application for which an email was
sent to local newsgroups asking for volunteer users. These
user requests were also used by Sant et al. [14]. We col-
lected accesses for each application over a long period
of time: Masplas:2 months, CPM:5 academic semesters,
DSpace:8 months.

We converted the user accesses into user sessions using
Sprenkle et al.’s framework [15]. For CPM, we partitioned
the user sessions by the semester in which they were col-
lected to provide more test suite subjects to model and com-
pare. Table 3 shows the characteristics of the collected user
sessions, in terms of the number of user sessions, the to-
tal number of user requests, and the percent of statements
covered.

4.4 Results and Discussion

present results
discuss impacts of results

Subject # User Sessions # Requests % Stmts Cvd
Masplas 169 1107 90%

Book 125 3564 57%
CPM1 58 1326 50%
CPM2 203 2393 67%
CPM3 105 1528 52%
CPM4 168 2240 54%
CPM5 356 4865 56%

Dspace 1800 22129 65%

Table 3. Characteristics of User Session Sets

5 Related Work

Approaches to automatically generating test cases for
web applications can be categorized broadly into building
static models of the web application from which tests are
generated, creating test cases directly from user sessions,
generating tests from models constructed from web logs,
generating tests through static analysis of the program, and
generating white-box-based tests through concolic testing.

There have been several efforts to statically model web
applications for testing, which has proved difficult [1].
With the goal of providing automated data flow testing,
Liu et al. [10] developed the object-oriented Web test
model (WATM), which consists of multiple models to cap-
ture the different tiers of web application. Ricca and
Tonella [12] developed a high-level Unified Modeling Lan-
guage (UML)-based representation of a web application and
described how to perform page, hyperlink, def-use, all-uses,
and all-paths testing based on the data dependences com-
puted using the model. Di Lucca et al. [11] developed a
web application model and a set of tools for evaluating and
automating web application testing. None of these mod-
els handles the dynamic features of modern web applica-
tions. Andrews et al. [2] proposed a system-level testing ap-
proach by modeling web applications with finite-state ma-
chines (FSMs) and using coverage criteria based on FSM
test sequences. While this approach is promising, it can
suffer from state space explosion.

Several different strategies for automatically construct-
ing test cases directly from collected user sessions have
been proposed [6, 15]. Sant et al.’s [14] construction of
a statistical testing model from the web log is similar to
Kallepalli and Tian [9]. By constructing a model from the
web logs, they can use the model for different kinds of test-
ing, including stress testing and statistical testing. Another
usage-based control model that was developed for GUI test-
ing, but is quite similar to the Sant et al. model [14], may be
applicable to web testing [4].

The large number of user sessions generated in user-
session-based testing can be reduced by test-suite reduction
techniques [16, 13]. Our paper differs from this approach
by reducing the test case templates before generating the
test cases, thus reducing the time to generate test cases as

well as the time to replay the test cases.
Several groups propose applying concolic testing to web

application testing to generate white-box-based test cases
with the goal of achieving branch or bounded path cover-
age [3, 17]. By combining concrete and symbolic execution
and constraint solving, the system automatically and itera-
tively creates new input values to explore additional control
flow paths through the PHP script. Artzi et al. [3] simulate
user interaction by transforming the script to mimic button
and menu inputs; the resulting test cases do not include tests
that include browser-based inputs, or distinguish between
most likely inputs to prioritize testing.

Halfond and Orso [8] developed a technique based on
static analysis of individual Java servlets that automatically
discovers web application interfaces (i.e., sets of named in-
put parameters with their domain type and relevant values,
which can be processed as a group by a servlet) and then
generates test cases by providing data values. Similar to the
concolic testing approach, this approach does not rely on
user sessions to reveal application behavior. The tradeoffis
that browser-based inputs and the distinction between most
likely and least likely inputs are not incorporated into test
case generation. This approach also does not test sequences
of requests and, therefore, does not necessarily test code re-
lated to session state (with the exception of login). Halfond
and Orso [8] mention that it would be interesting to combine
their approach with user-session-based testing.

6 Conclusions and Future Work

In this paper, we propose various data models that each
represents user data in a different way. We analyzed user
sessions and developed data models with the goal of re-
ducing the number of redundant test cases generated, while
maintaining user representation. We identified three main
predictors (parameter interactions, history, and user roles)
that affect parameter values and developed data models
based on these predictors.

In future work, we plan to consider other possible factors
as potential predictors of parameter values and create new
data models using these them.

References

[1] M. Alalfi, J. Cordy, and T. Dean. A survey of analysis
models and methods in website verification and testing. In
ICWE’07, 7th International Conference on Web Engineering
Lecture Notes in Computer Science 4607, pages 306–311,
July 2007.

[2] A. Andrews, J. Offutt, and R. Alexander. Testing web ap-
plications by modeling with FSMs.Software and Systems
Modeling, 4(3), 2005.

[3] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar,
and M. D. Ernst. Finding bugs in dynamic web applica-
tions. InProceedings of the 2008 International Symposium
on Software Testing and Analysis (ISSTA), pages 261–272,
New York, NY, USA, 2008. ACM.

[4] P. A. Brooks and A. M. Memon. Automated GUI testing
guided by usage profiles. InProceedings of the twenty-
second IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 333–342, New York,
NY, USA, 2007. ACM.

[5] DSpace Federation. http://www.dspace.org/,
2008.

[6] S. Elbaum, G. Rothermel, S. Karre, and M. F. II. Leveraging
user session data to support web application testing.IEEE
Transactions on Software Engineering, 31(3):187–202, May
2005.

[7] Open source web applications with source code.http:
//www.gotocode.com, 2003.

[8] W. G. J. Halfond and A. Orso. Improving test case genera-
tion for web applications using automated interface discov-
ery. In Proceedings of the the 6th joint meeting of the Eu-
ropean software engineering conference and the ACM SIG-
SOFT symposium on The foundations of software engineer-
ing, pages 145–154, New York, NY, USA, 2007. ACM.

[9] C. Kallepalli and J. Tian. Measuring and modeling usage
and reliability for statistical web testing.IEEE Transactions
on Software Engineering, 27(11):1023–1036, 2001.

[10] C.-H. Liu, K. D. C., P. Hsia, and C.-T. Hsu. Structural testing
of web applications. InInternational Symposium on Soft-
ware Reliability Engineering (ISSRE), 2000.

[11] G. D. Lucca, A. Fasolino, F. Faralli, and U. Carlini. Testing
web applications. InInternational Conference on Software
Maintenance, 2002.

[12] F. Ricca and P. Tonella. Analysis and testing of web applica-
tions. InInt’l Conf. on Software Engineering (ICSE), 2001.

[13] S. Sampath, S. Sprenkle, E. Gibson, L. Pollock, and
A. Souter. Applying concept analysis to user-session-based
testing of web applications.Accepted To Appear in IEEE
Transactions on Software Engineering, 2008.

[14] J. Sant, A. Souter, and L. Greenwald. An exploration of
statistical models of automated test case generation. InPro-
ceedings of the Third International Workshop on Dynamic
Analys is, May 2005.

[15] S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock. A case
study of automatically creating test suites from web applica-
tion field data. InTAV-WEB ’06: Proceedings of the 2006
workshop on Testing, Analysis, and Verification of Web Ser-
vices and Applications, New York, NY, USA, July 2006.
ACM Press.

[16] S. Sprenkle, S. Sampath, E. Gibson, L. Pollock, and
A. Souter. An empirical comparison of test suite reduc-
tion techniques for user-session-based testing of web appli-
cations. InProceedings of the International Conference on
Software Maintenance (ICSM), pages 587–596. IEEE Com-
puter Society, September 2005.

[17] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Ina-
mura, and Z. Su. Dynamic test input generation for web ap-
plications. InProceedings of the International Symposium
on Software Testing and Analysis (ISSTA), pages 249–260,
New York, NY, USA, 2008. ACM.

