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ABSTRACT 
In their first semester, mechanical and civil engineering 
students learn the mechanics of trusses, one of the most 
fundamental concepts of engineering. From houses and 
bridges to skyscrapers and playground equipment, trusses 
are the support systems of everything around us, so a clear 
understanding of them is imperative to success.  Professors 
want to assign homework problems involving hand drawn 
truss diagrams, but the grading of such diagrams requires 
extensive time commitment. Especially in large classrooms, 
this amount of time is difficult to attain. To combat this 
problem, we introduce Mekanix, a sketch recognition 
system that can recognize, correct, and provide feedback on 
a student’s hand-drawn truss diagram in real-time. We use 
geometric constraints to recognize the diagram’s 
components from the primitive shapes (i.e. line, circle, 
triangle, etc.) they comprise. In order to make our 
recognizers robust enough for classroom use, we allow for 
several configurations, variations, and drawing styles for 
each shape. Designed to enhance learning, Mekanix is an 
unobtrusive and helpful tool that benefits the professor and 
teaching assistant as much as the student.  

INTRODUCTION 
In their first semester, mechanical and civil engineering 
students learn the fundamental concepts of engineering.  A 
large portion of the time spent in these introductory classes 
is devoted to solving statics problems.  Statics problems 
usually require the student to draw free body diagrams and 
planar truss diagrams. 

A free body diagram can be used to analyze all of the 
internal and external forces acting on an object, while a 
planar truss diagram is simply a two dimensional 
representation of a structure.  This type of structure is 
constructed from physical beams and joints.  Joints, also 
referred to as nodes, are located at the intersection of two or 
more beams and are the location where external forces may 
act upon the object.  Furthermore, these external forces 
create member forces within each individual beam by 
tension or compression of the beam.  

Trusses are used as supports in many structures such as 
bridges, houses, and other buildings.  An excellent 
foundation of how to construct a truss is critical for a 
student’s success as an engineer in the future.  

In current practice, the most effective method for learning 
how to construct a truss is to draw the truss along with the 
forces acting upon it on pen and paper.  This method works 
best when an active learning approach is taken, that is, a 
learner should be engaged and cognitively active while 
learning.  Timely feedback should be given to the learner 
when a mistake is made to prevent the learner from adding 
false information into their knowledge framework.  

While this method seems ideal, the large class sizes of 
introductory engineering courses prevents hand-drawn 
solutions from being used often because of time 
commitment involved in grading and providing feedback to 
the students.  To combat these time constraints, multiple 
choice questions are the primary source of testing.  In these 
courses, students are likely to receive only one or two hand-
drawn assignments a semester.   

To stimulate the educational value of these courses, the 
need for a better method of grading these hand-drawn truss 
diagrams is necessary.  Hand-drawn homework problems, 
such as truss diagrams, afford themselves the use of sketch 
recognition as a solution.  Sketch recognition allows a user 
to freely draw any combination of strokes and attempts to 
recognize and interpret what the user intended by the 
sketch. 

BACKGROUND 
There are two main categories of sketch recognition: 
gesture-based and free-sketch. Gesture-based recognition 
systems track the movements of the pen (or mouse) and 
recognize shapes based on the gestures. Gesture recognition 
requires that each element of the shape be drawn in 
succession. For example, this system recognizes a circle 
drawn in a clockwise direction differently that one drawn 
counter-clockwise. Because of the specific nature of the 
gestures, recognition accuracy can be quite high, but 



 

learning the movements can be tedious and time-
consuming. 

Free-sketch systems focus more on what a shape looks like 
than how it is drawn. These systems use a combination of 
techniques to recognize shapes, including vision- [Oltmans 
2007], and geometric-based techniques [Alvarado 2004; 
Hammond 2005]. These methods allow users to sketch 
naturally, permitting them to begin using the programs with 
little or no instruction. This is ideal for educational software 
because teachers and professors want the students to learn 
the concepts of the course, not specifics of software. The 
obvious benefits of free-sketch recognition techniques led 
us to choose a geometric-based system for Mekanix. 

RELATED AND PRIOR WORK 
LADDER [Hammond 2005] is a sketch recognition 
language that is used for the recognition of shapes. 
 LADDER uses geometric recognition to define how a 
shape is formed.  Recognizers can be defined by first 
drawing a shape.  LADDER takes the sketched shape and 
recognizes the primitive shapes such as lines, arcs, circles, 
etc. LADDER then automatically creates a recognizer for 
that shape based on constraints like “below”, “near”, or 
“coincident”.  This is first accomplished by recognizing 
primitive shapes such as lines, arcs, circles, etc. LADDER 
then uses these constraints to define or describe the higher 
level shapes. 

PaleoSketch [Paulson 2008] is a sketch recognition library 
used to recognize hand-drawn primitives like lines, ellipses, 
arcs, curves, etc.  To do this, PaleoSketch creates 
confidence values on what shape a stroke could potentially 
be. PaleoSketch then chooses the shape with highest 
confidence value as the recognized shape. 

WinTruss [Sutton 2000] is an application to design and 
solve truss diagrams.  Before the user can begin drawing 
trusses, the application’s environment must be set up with 
specific information about units, grid spacing, and the 
materials being used to build the structure.  After this is 
done, the system allows the user to use tools such as the 
“beam tool” to draw a beam on the screen, define the actual 
length of the beam, and label it as needed.  After the 
external forces have been applied to the truss diagram, 
WinTruss can solve the member force values of the 
constructed truss diagram.  The system is designed to allow 
the user to draw and simulate the forces acting on the truss, 
however, it does not provide instruction or feedback on how 
trusses should be formed.  

Newton’s Pen [Stahovich 2007] is a “pentop computer” 
application, meaning that it runs on a processor inside the 
pen itself. The application uses vision-based sketch 
recognition to accept or reject very simple free body 
diagrams. To recognize shapes, the pen digitizes the ink 
that it inscribes on paper and compares the digitized strokes 
to a bitmap of the “perfect” configuration for that shape. 
The program runs as a finite state machine, so each piece of 
the diagram must be drawn in a specific order and 

configuration. Newton's Pen gives basic feedback to the 
user, but only to inform of the number of forces left to be 
drawn. 

METHOD 

Building Blocks of Geometric Recognition 
The hierarchical building-blocks of our recognition are 
points, strokes, and shapes. 

Points are the simplest of these. The program generates a 
point for each movement of the mouse. It records the x and 
y coordinates the current time, and sometimes the pressure 
and tilt of the pen.  

Strokes contain the group of points collected in the time 
between when the pen touches down on the tablet, and 
when it loses contact with it. This compares to pen strokes 
on paper. For example, a “y” character written in cursive 
will be one stroke, but a printed “y” will likely be two 
strokes.  

Primitive shapes contain at most a single stroke, but a 
single stroke can create multiple primitive shapes. Strokes 
are segmented using a cusp detector [Wolin 2010] and the 
primitive shapes are recognized by PaleoSketch [Paulson 
2008]. Examples of primitive shapes are line segments, 
circles, arcs, curves, polylines (several line segments drawn 
in a single stroke), triangles, etc. 

Complex shapes are built first of primitives and composed 
hierarchically to allow for more and more complex shapes. 
A real-world example of a complex shape is a house. 
People generally draw a house as a rectangle with a triangle 
above of it. Thus, the members of our house shape are a 
triangle (made up of three lines) and a rectangle (made up 
of four lines). Mekanix creates complex shapes only after 
the member shapes pass our geometric-constraint-based 
recognizers. 

Geometric Constraints 
The human brain has the ability to see a nearly horizontal 
line and still perceive it to be horizontal, and our 
recognition needs to work similarly. Mekanix needs to 
perceive shapes the same way a human brain would, so we 
need a way to quantify “reasonably.” We do this through 
geometric constraints. Example constraints are belowness, 
leftness, horizontalness, verticalness, slantedness, and 
nearness [Johnston 2009]. Constraints return confidence 
values between 0 (not confident at all) and approximately 1 
(entirely confident). In our program, we take a confidence 
value of 0.55 to mean that the “reasonable” condition is 
met.  

Figure 1. Is the red triangle below the orange ‘y’? 



Figure 3. Example geometric constraints for a roller support 

Perhaps the constraint that sounds the simplest is 
belowness. From a mathematical perspective, a simple 
comparison of the y-coordinates of the shapes would 
determine a logical and exact definition of belowness. If we 
took the mathematical approach to the shapes in Figure 1, 
the red triangle would be confirmed to be below the orange 
‘y’ shape, when human perception says otherwise. If asked 
what is below the ‘y’, human eyes would simply start at the 
‘y’ shape and look down. By this method, the red triangle is 
certainly not below the orange ‘y’. Constraints need to be as 
perceptual as they are geometric.    

Steps to Recognition 
Our recognition happens in five simple steps: 

1. Record points as pen traces on screen and add points to 
new stroke. 

2. Send each new stroke to PaleoSketch (a primitive shape 
recognition system) [Paulson 2008] to find primitive 
shapes (line, circle, arc, polyline, etc.). 

3. Add new shape to collection of all shapes. 
4. Send groupings of shapes to complex shape recognizers 

that apply geometric constraints. 
5. Combine into complex shape, return to step 3 and cycle 

until no more complex shapes can be found. 
The step that we will explain in most detail is step four: 
applying geometric constraints to find complex shapes. 
Take, for example, the roller support given in Figure 2. This 
shape requires a triangle and two circles as members. The 
recognizer for this shape checks the following conditions: 

• The triangle must contain a horizontal line, and that line 
must be below the other two lines. 

• The intersection point of the other two triangle lines and 
the midpoint of the horizontal line must create a vertical 
line. 

• The circles must be smaller than the triangle. 

• The circles must be similar in size to one another. 

• The circles must be below and near the triangle. 

• The midpoints of the circles must form a horizontal line. 

A graphical representation of these constraints is given in 
Figure 3. 

If the component shapes meet all of the constraints for a 
specific configuration, the recognizer combines them into a 
new shape. The collection removes each of the component 
shapes and then adds the new shape. The recognizers test 
new groupings made with that new shape to ensure the most 
complete and thorough recognition possible before the 
program returns to the first step (gathering points and to 
make strokes). All recognition executes in real-time.  

Upon positive recognition, the recognizer assigns the new 
shape a label that basically acts as a name tag to the other 
shapes. The recognizers use obvious labels for the shapes 
they represent. An arrow gets the label “arrow”, a triangle 
gets “triangle”, etc. These labels allow multiple recognizers, 
and thus multiple configurations, of each shape.  The roller 
support mentioned above is only one of many roller support 
configurations that exist in the domain of truss diagrams. 
All of the configurations have the same meaning, so the 
program simply labels all successful configurations “roller 
support”. 

More About Our Recognizers 
It takes finesse and refinement to create geometric 
constraints that are neither too loose nor too tight. Even 
shapes that sound incredibly simple can take hundreds of 
lines of code to define. Arrows for example, are a very 

Figure 2. A sketched example of a simple roller support 



 

common shape and have a fairly concise set of geometric 
constraints. Arrows are very difficult to define, though, 
because there are many, many ways of drawing them. A 
user may choose to draw an arrow in a single stroke, or two 
strokes, or three, or four, or five strokes. The shaft of an 
arrow may be very close to the point of an arrow head, but 
sometimes it is far away. An arrow can point in any 
direction and be any size. So many variations of this shape 
exist that Mekanix needs several recognizers to cover all 
possibilities. 

RESULTS 
It will take at least a semester of classroom use to formulate 
quantifiable data on the educational benefit of Mekanix, so 
currently, we can make few meaningful conclusions. We 
have, however, performed several user studies with civil 
and mechanical engineering graduate students and 
professors to ensure that the software we send into the 
classroom is robust and intuitive. Each of the five studies 
helped us to iteratively assess the accuracy of our 
recognizers and the usability and flow of our interface. 

We have a formal classroom study planned to take place 
during the fall 2010 semester. In our study, we will gather 
about 75 participants from a single undergraduate 
engineering course usually taken by freshmen. Each student 
will receive extra credit for his/her participation in the 
study. We will split participants into four groups. Three of 
the groups will attend five two-hour sessions (ten hours 
total) during which they will receive several problems to 
solve. One group will solve the problems using our 
Mekanix software, one will use WinTruss (a competitor 
software), and one will use simple pencil and paper. The 
fourth group will attend no extra tutoring sessions. 

We will track the test scores of the participants before, 
during, and after the tutoring sessions to determine the 
impact of Mekanix's instant feedback on overall learning. 
We will also invite a sampling of the participants in the first 
three groups to a focus group discussion, where we will ask 
for feedback on the effectiveness, intuitiveness, and 
helpfulness of each method (Mekanix, WinTruss, and 
pen/paper). 

CONCLUSIONS AND FUTURE WORK 
Mekanix recognizes, corrects, and provides feedback on a 
student’s hand-drawn truss diagram in real-time. We use 
geometric constraints to recognize the diagram’s 
components from the primitive shapes they comprise. In 
order to make our recognizers robust enough for classroom 
use, we allow for several configurations, variations, and 
drawing styles for each shape. Designed to enhance 
learning, Mekanix is an unobtrusive and helpful recognition 
tool that benefits the professor and the teaching assistant as 
much as the student. 

In the future, we hope to create a web system to process the 
correctness of sketches, thus removing the "key" sketches 
from the student's hands. The “keys” currently take little 
investigation to discover if a student is knowledgeable 
about the system. 

Also, we would like to expand our system to allow the full 
spectrum of free-body diagrams, not just trusses. 
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