
Just Truss Me: Symbol Recognition
Stephanie Valentine, Chris Aikens, Alexis Chuck, Martin Field, Travis Kosarek,

Drew Logsdon, Laura Murphy, Patrick Robinson, Alyssa Nabors, Paul Taele,
 Erin McTigue, Julie Linsey, Tracy Hammond

Sketch Recognition Lab
Computer Science Department

Texas A&M University
911 Richardson

College Station, TX 77843-3112

ABSTRACT
In their first semester, mechanical and civil engineering
students learn the mechanics of trusses, one of the most
fundamental concepts of engineering. From houses and
bridges to skyscrapers and playground equipment, trusses
are the support systems of everything around us, so a clear
understanding of them is imperative to success. Professors
want to assign homework problems involving hand drawn
truss diagrams, but the grading of such diagrams requires
extensive time commitment. Especially in large classrooms,
this amount of time is difficult to attain. To combat this
problem, we introduce Mekanix, a sketch recognition
system that can recognize, correct, and provide feedback on
a student’s hand-drawn truss diagram in real-time. We use
geometric constraints to recognize the diagram’s
components from the primitive shapes (i.e. line, circle,
triangle, etc.) they comprise. In order to make our
recognizers robust enough for classroom use, we allow for
several configurations, variations, and drawing styles for
each shape. Designed to enhance learning, Mekanix is an
unobtrusive and helpful tool that benefits the professor and
teaching assistant as much as the student.

INTRODUCTION
In their first semester, mechanical and civil engineering
students learn the fundamental concepts of engineering. A
large portion of the time spent in these introductory classes
is devoted to solving statics problems. Statics problems
usually require the student to draw free body diagrams and
planar truss diagrams.

A free body diagram can be used to analyze all of the
internal and external forces acting on an object, while a
planar truss diagram is simply a two dimensional
representation of a structure. This type of structure is
constructed from physical beams and joints. Joints, also
referred to as nodes, are located at the intersection of two or
more beams and are the location where external forces may
act upon the object. Furthermore, these external forces
create member forces within each individual beam by
tension or compression of the beam.

Trusses are used as supports in many structures such as
bridges, houses, and other buildings. An excellent
foundation of how to construct a truss is critical for a
student’s success as an engineer in the future.

In current practice, the most effective method for learning
how to construct a truss is to draw the truss along with the
forces acting upon it on pen and paper. This method works
best when an active learning approach is taken, that is, a
learner should be engaged and cognitively active while
learning. Timely feedback should be given to the learner
when a mistake is made to prevent the learner from adding
false information into their knowledge framework.

While this method seems ideal, the large class sizes of
introductory engineering courses prevents hand-drawn
solutions from being used often because of time
commitment involved in grading and providing feedback to
the students. To combat these time constraints, multiple
choice questions are the primary source of testing. In these
courses, students are likely to receive only one or two hand-
drawn assignments a semester.

To stimulate the educational value of these courses, the
need for a better method of grading these hand-drawn truss
diagrams is necessary. Hand-drawn homework problems,
such as truss diagrams, afford themselves the use of sketch
recognition as a solution. Sketch recognition allows a user
to freely draw any combination of strokes and attempts to
recognize and interpret what the user intended by the
sketch.

BACKGROUND
There are two main categories of sketch recognition:
gesture-based and free-sketch. Gesture-based recognition
systems track the movements of the pen (or mouse) and
recognize shapes based on the gestures. Gesture recognition
requires that each element of the shape be drawn in
succession. For example, this system recognizes a circle
drawn in a clockwise direction differently that one drawn
counter-clockwise. Because of the specific nature of the
gestures, recognition accuracy can be quite high, but

learning the movements can be tedious and time-
consuming.

Free-sketch systems focus more on what a shape looks like
than how it is drawn. These systems use a combination of
techniques to recognize shapes, including vision- [Oltmans
2007], and geometric-based techniques [Alvarado 2004;
Hammond 2005]. These methods allow users to sketch
naturally, permitting them to begin using the programs with
little or no instruction. This is ideal for educational software
because teachers and professors want the students to learn
the concepts of the course, not specifics of software. The
obvious benefits of free-sketch recognition techniques led
us to choose a geometric-based system for Mekanix.

RELATED AND PRIOR WORK
LADDER [Hammond 2005] is a sketch recognition
language that is used for the recognition of shapes.
 LADDER uses geometric recognition to define how a
shape is formed. Recognizers can be defined by first
drawing a shape. LADDER takes the sketched shape and
recognizes the primitive shapes such as lines, arcs, circles,
etc. LADDER then automatically creates a recognizer for
that shape based on constraints like “below”, “near”, or
“coincident”. This is first accomplished by recognizing
primitive shapes such as lines, arcs, circles, etc. LADDER
then uses these constraints to define or describe the higher
level shapes.

PaleoSketch [Paulson 2008] is a sketch recognition library
used to recognize hand-drawn primitives like lines, ellipses,
arcs, curves, etc. To do this, PaleoSketch creates
confidence values on what shape a stroke could potentially
be. PaleoSketch then chooses the shape with highest
confidence value as the recognized shape.

WinTruss [Sutton 2000] is an application to design and
solve truss diagrams. Before the user can begin drawing
trusses, the application’s environment must be set up with
specific information about units, grid spacing, and the
materials being used to build the structure. After this is
done, the system allows the user to use tools such as the
“beam tool” to draw a beam on the screen, define the actual
length of the beam, and label it as needed. After the
external forces have been applied to the truss diagram,
WinTruss can solve the member force values of the
constructed truss diagram. The system is designed to allow
the user to draw and simulate the forces acting on the truss,
however, it does not provide instruction or feedback on how
trusses should be formed.

Newton’s Pen [Stahovich 2007] is a “pentop computer”
application, meaning that it runs on a processor inside the
pen itself. The application uses vision-based sketch
recognition to accept or reject very simple free body
diagrams. To recognize shapes, the pen digitizes the ink
that it inscribes on paper and compares the digitized strokes
to a bitmap of the “perfect” configuration for that shape.
The program runs as a finite state machine, so each piece of
the diagram must be drawn in a specific order and

configuration. Newton's Pen gives basic feedback to the
user, but only to inform of the number of forces left to be
drawn.

METHOD

Building Blocks of Geometric Recognition
The hierarchical building-blocks of our recognition are
points, strokes, and shapes.

Points are the simplest of these. The program generates a
point for each movement of the mouse. It records the x and
y coordinates the current time, and sometimes the pressure
and tilt of the pen.

Strokes contain the group of points collected in the time
between when the pen touches down on the tablet, and
when it loses contact with it. This compares to pen strokes
on paper. For example, a “y” character written in cursive
will be one stroke, but a printed “y” will likely be two
strokes.

Primitive shapes contain at most a single stroke, but a
single stroke can create multiple primitive shapes. Strokes
are segmented using a cusp detector [Wolin 2010] and the
primitive shapes are recognized by PaleoSketch [Paulson
2008]. Examples of primitive shapes are line segments,
circles, arcs, curves, polylines (several line segments drawn
in a single stroke), triangles, etc.

Complex shapes are built first of primitives and composed
hierarchically to allow for more and more complex shapes.
A real-world example of a complex shape is a house.
People generally draw a house as a rectangle with a triangle
above of it. Thus, the members of our house shape are a
triangle (made up of three lines) and a rectangle (made up
of four lines). Mekanix creates complex shapes only after
the member shapes pass our geometric-constraint-based
recognizers.

Geometric Constraints
The human brain has the ability to see a nearly horizontal
line and still perceive it to be horizontal, and our
recognition needs to work similarly. Mekanix needs to
perceive shapes the same way a human brain would, so we
need a way to quantify “reasonably.” We do this through
geometric constraints. Example constraints are belowness,
leftness, horizontalness, verticalness, slantedness, and
nearness [Johnston 2009]. Constraints return confidence
values between 0 (not confident at all) and approximately 1
(entirely confident). In our program, we take a confidence
value of 0.55 to mean that the “reasonable” condition is
met.

Figure 1. Is the red triangle below the orange ‘y’?

Figure 3. Example geometric constraints for a roller support

Perhaps the constraint that sounds the simplest is
belowness. From a mathematical perspective, a simple
comparison of the y-coordinates of the shapes would
determine a logical and exact definition of belowness. If we
took the mathematical approach to the shapes in Figure 1,
the red triangle would be confirmed to be below the orange
‘y’ shape, when human perception says otherwise. If asked
what is below the ‘y’, human eyes would simply start at the
‘y’ shape and look down. By this method, the red triangle is
certainly not below the orange ‘y’. Constraints need to be as
perceptual as they are geometric.

Steps to Recognition
Our recognition happens in five simple steps:

1. Record points as pen traces on screen and add points to
new stroke.

2. Send each new stroke to PaleoSketch (a primitive shape
recognition system) [Paulson 2008] to find primitive
shapes (line, circle, arc, polyline, etc.).

3. Add new shape to collection of all shapes.
4. Send groupings of shapes to complex shape recognizers

that apply geometric constraints.
5. Combine into complex shape, return to step 3 and cycle

until no more complex shapes can be found.
The step that we will explain in most detail is step four:
applying geometric constraints to find complex shapes.
Take, for example, the roller support given in Figure 2. This
shape requires a triangle and two circles as members. The
recognizer for this shape checks the following conditions:

• The triangle must contain a horizontal line, and that line
must be below the other two lines.

• The intersection point of the other two triangle lines and
the midpoint of the horizontal line must create a vertical
line.

• The circles must be smaller than the triangle.

• The circles must be similar in size to one another.

• The circles must be below and near the triangle.

• The midpoints of the circles must form a horizontal line.

A graphical representation of these constraints is given in
Figure 3.

If the component shapes meet all of the constraints for a
specific configuration, the recognizer combines them into a
new shape. The collection removes each of the component
shapes and then adds the new shape. The recognizers test
new groupings made with that new shape to ensure the most
complete and thorough recognition possible before the
program returns to the first step (gathering points and to
make strokes). All recognition executes in real-time.

Upon positive recognition, the recognizer assigns the new
shape a label that basically acts as a name tag to the other
shapes. The recognizers use obvious labels for the shapes
they represent. An arrow gets the label “arrow”, a triangle
gets “triangle”, etc. These labels allow multiple recognizers,
and thus multiple configurations, of each shape. The roller
support mentioned above is only one of many roller support
configurations that exist in the domain of truss diagrams.
All of the configurations have the same meaning, so the
program simply labels all successful configurations “roller
support”.

More About Our Recognizers
It takes finesse and refinement to create geometric
constraints that are neither too loose nor too tight. Even
shapes that sound incredibly simple can take hundreds of
lines of code to define. Arrows for example, are a very

Figure 2. A sketched example of a simple roller support

common shape and have a fairly concise set of geometric
constraints. Arrows are very difficult to define, though,
because there are many, many ways of drawing them. A
user may choose to draw an arrow in a single stroke, or two
strokes, or three, or four, or five strokes. The shaft of an
arrow may be very close to the point of an arrow head, but
sometimes it is far away. An arrow can point in any
direction and be any size. So many variations of this shape
exist that Mekanix needs several recognizers to cover all
possibilities.

RESULTS
It will take at least a semester of classroom use to formulate
quantifiable data on the educational benefit of Mekanix, so
currently, we can make few meaningful conclusions. We
have, however, performed several user studies with civil
and mechanical engineering graduate students and
professors to ensure that the software we send into the
classroom is robust and intuitive. Each of the five studies
helped us to iteratively assess the accuracy of our
recognizers and the usability and flow of our interface.

We have a formal classroom study planned to take place
during the fall 2010 semester. In our study, we will gather
about 75 participants from a single undergraduate
engineering course usually taken by freshmen. Each student
will receive extra credit for his/her participation in the
study. We will split participants into four groups. Three of
the groups will attend five two-hour sessions (ten hours
total) during which they will receive several problems to
solve. One group will solve the problems using our
Mekanix software, one will use WinTruss (a competitor
software), and one will use simple pencil and paper. The
fourth group will attend no extra tutoring sessions.

We will track the test scores of the participants before,
during, and after the tutoring sessions to determine the
impact of Mekanix's instant feedback on overall learning.
We will also invite a sampling of the participants in the first
three groups to a focus group discussion, where we will ask
for feedback on the effectiveness, intuitiveness, and
helpfulness of each method (Mekanix, WinTruss, and
pen/paper).

CONCLUSIONS AND FUTURE WORK
Mekanix recognizes, corrects, and provides feedback on a
student’s hand-drawn truss diagram in real-time. We use
geometric constraints to recognize the diagram’s
components from the primitive shapes they comprise. In
order to make our recognizers robust enough for classroom
use, we allow for several configurations, variations, and
drawing styles for each shape. Designed to enhance
learning, Mekanix is an unobtrusive and helpful recognition
tool that benefits the professor and the teaching assistant as
much as the student.

In the future, we hope to create a web system to process the
correctness of sketches, thus removing the "key" sketches
from the student's hands. The “keys” currently take little
investigation to discover if a student is knowledgeable
about the system.

Also, we would like to expand our system to allow the full
spectrum of free-body diagrams, not just trusses.

ACKNOWLEDGMENTS
We thank the CRA-W/CDC Distributed Research
Experience for supporting this opportunity.

This work funded in part by NSF IIS grants: NSF 0935219:
Civil Engineering Sketch Workbook, NSF 0942400:
Sketched-Truss Recognition Tutoring System, and NSF
0943999: REU Supplement for 0757557.

REFERENCES
1. [Alvarado 2004] Alvarado, C. (2004) Sketch

Recognition User Interfaces: Guidelines for Design and
Development. In Proceedings of AAAI Fall Symposium
on Intelligent Pen-based Interfaces, 2004.

2. [Hammond 2005] Hammond, T., and Davis, R., 2005,
LADDER: A Sketching Language for User Interface
Developers, Computer and Graphics, Elsevier, pp. 518-
532.

3. [Johnston 2009] Johnston, J., and Hammond, T., 2009,
Assigning Confidence Values to Geometric Constraints,
2009 Intelligent User Interfaces Workshop on Sketch
Recognition, pp. 1-4.

4. [Lee 2007] Lee W., Silva, R., Peterson, E., Calfee, R,
Stahovich, T., Newton’s Pen – A Pen-based Tutoring
System for Statics., 2007 EUROGRAPHICS Workshop
on Sketch-Based Interfaces and Modeling, pp 59-66.

5. [Oltmans, 2007] Oltmans, M., Envisioning Sketch
Recognition: A Local Feature Based Approach to
Recognizing Informal Sketches. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA,
May 2007.

6. [Paulson 2008] Paulson, B., and Hammond, T., 2008,
PaleoSketch: Accurate Primitive Sketch Recognition
and Beautification, 13th International Conference on
Intelligent User Interfaces, pp. 1-10.

7. [Sutton 2000] Sutton, M., and Jong, I., 2000, A Truss
Analyzer for Enriching the Learning Experience of
Students. In 2000 ASEE Annual Conference Proceeding.

8. Wolin, A. Segmenting Hand-Drawn Strokes. Texas
A&M University Masters Thesis, May 14, 2010.

	ABSTRACT
	INTRODUCTION
	BACKGROUND
	RELATED AND PRIOR WORK

	METHOD
	Building Blocks of Geometric Recognition
	Geometric Constraints
	Steps to Recognition
	More About Our Recognizers
	RESULTS
	CONCLUSIONS AND FUTURE WORK

	ACKNOWLEDGMENTS
	REFERENCES

