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1 Abstract

Molecular dynamics codes often deal with large amounts of data with many dependencies which result in
greater execution time for the code. These dependencies increase the execution time of the code because the
code is run serially rather than in parallel. In order to improve on the codes performance I have parallelized
the code to a greater extent by doing a full sparse tiling [2] on three main molecular dynamics loops.
Additionally, to better visualize these loop dependencies I have created an algorithm that graphs and labels
each iteration of each node, shows the dependencies (edges) between nodes of different loops, and labels each
node so that the tiling can be seen. The results of the tests run between the code that is not reordered using
the partition graph coloring algorithm and the code that is have shown that when partition graph coloring
is used the average parallelism increases. The results have also shown that when partition graph coloring is
not used the code runs linearly with an average parallelism of 1.

2 Introduction

Moldyn is a molecular dynamics simulation [1] that models the interactions between molecules. The main
moldyn code consists of three loops. The first one loops over the molecules, the second one over the interac-
tions between those molecules and the third loops, again, over the molecules. These loops all use the same
set of molecules so there are many dependencies between them. These dependencies between loops occur
when there is an interaction between two different molecules. For example, we have the interactions array in
Table 2 that is filled with pairs of molecules that interact. In column 0 we have the pair 0 and 1, this means
that molecule 0 and molecule 1 interact with each other. This interaction creates a dependency from the
first (molecules) loop to the second (interactions) loop from molecule 0 in the molecules loop to iteration 0
in the interactions loop. There is another dependency from molecule 1 in the molecules loop to iteration 0
in the interactions loop. These are mirrored between the interactions loop and the third (molecules) loop as
well so there is a dependency from iteration 0 in the second loop to both molecule 0 and molecule 1 in the
third loop. These dependencies generate edges between the three loops that can be seen in the dependency
graph in Figure 3.

In order to help with the parallelization of these loops there is an algorithm that tiles these loops. The
tiles and the dependencies between the loops are hard to visualize in one’s mind and part of my project
helps solve that problem. The dependency graphs generated by my algorithm create a graph that shows the
dependencies between each of the three loops. The graph is also color coded according to the tile a node is
put into. From the graph, one can see which nodes in which iterations are in certain tiles.

Another part of this project is the task graph interface. The task graph interface is used to create a graph
that shows dependencies between tasks. In the case of moldyn, each task represents a tile and the task graph
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Table 1: Information about the graphs used

input molecules interactions

test.graph 10 17

Table 2: Example interactions array

0 1 2 3 4 5 ... 16

0 0 0 0 0 1 ... 7

1 2 3 4 6 2 ... 8

shows a dependency between the tasks/tiles if there is a node used in both tiles. This is another handy
visualization tool that shows how dependent the three loops are on each other. The task graph interface
allows the user to specify a parallelization engine to be used on the code. The engines include OpenMP, tbb,
cilk, cnc, and pthreads. This returns different time results depending on the algorithm. Adding the moldyn
algorithms into this interface was another part of the project that I worked on. To the best of our knowledge
molecular dynamics codes have never been parallelized this way before.

The use of partition graph coloring on the moldyn code when compared to the code without resulted in
what we expected. The average parallelism of the code when run without the partition graph coloring ended
up being 1 for every test run on every file in Table 3. The results when partition graph coloring was used
shows a higher average parallelism for each test, as expected. These results are displayed in Figure 7 and
Figure 8. Figure 7 compares the average parallelism to the partition size while Figure 8 compares the average
parallelism to the tile size.

3 Fine Grained Dependence Graph

In the dependency graph (see Figure 3) the nodes represent an iteration of a certain loop and are labeled
as such. The edges represent a dependency between the iterations in different loops. There is an edge from
the first loop of the molecules loop to the interactions loop if that molecule is involved in that particular
interaction. These edges are reflected between the second and third loop. If there is a directed edge from
the first loop to the second, for example, from node 1 in the first loop to interaction 5 in the second loop
then there will be a directed edge from interaction 5 to node 1 in the third loop as well.

Figure 1 shows the algorithm that creates this fine grained dependence graph. The algorithm begins with
three for loops that add each of the nodes from the three moldyn loops to the dot file that creates the
visualization. Each iteration of a for loop is its own node in the graph. The loops also label the nodes with
their loop number and iteration number. For example, if we are looking at loop 1 (the interactions loop) at
iteration 2 the label on the node would be 1,2. These loops also set the color of the node according to which
tile they have been placed in. After the three loops there is one final loop that iterates over the interactions
array in order to create the directed edges between the three loops. This loop starts by getting the two
molecules that interact with each other at the current iteration of the interactions array. At this point the
directed edges from the first loop (0 - the molecules loop) to the second loop (the interactions) are formed.
An edge is created for each of the two interaction molecules in the first loop to the interactions loop at the
current iteration. After this the two directed edges from the current interaction node to the third loop (the
molecules) are created. The interaction node has a directed edge to each of the two molecules in the third
loop that are involved in the interaction. The pseudocode in Figure 1 shows the four loops involved in the
algorithm. An example of a two tiled graph generated by this algorithm can be seen in Figure 3.
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// creates l a b e l s for each i t e r a t i on of the
// f i r s t loop in the moldyn algori thm
for each molecule

add a l i n e to the dot f i l e that c r e a t e s
and l a b e l s the molecule in the f i r s t loop

// creates l a b e l s for each in t e rac t i on
// represented in the second loop of the
// moldyn algori thm
for each i n t e r a c t i o n

add a l i n e to the dot f i l e that c r e a t e s
and l a b e l s the i n t e r a c t i o n node

// creates l a b e l s for each i t e r a t i on of the
// th i rd loop in the moldyn algori thm
for each molecule

add a l i n e to the dot f i l e that c r e a t e s
and l a b e l s the molecule in the th i rd loop

// creates an edge from the f i r s t loop to the
// second loop ( in t e rac t i ons ) for each pair
// of molecules tha t in t e rac t and then creates an
// edge from the in t e rac t i ons loop to the
// same molecules in the th i rd loop
for each i n t e r a c t i o n

add the edges from the f i r s t loop for each
i n t e r a c t i o n pa i r :

(0 , node1 ) −> (1 , i n t e r a c t i o n )
(0 , node2 ) −> (1 , i n t e r a c t i o n )

add the d i r e c t ed edges from the i n t e r a c t i o n s
loop to the l a s t molecu les loop :

(1 , i n t e r a c t i o n ) −> (2 , node1 )
(1 , i n t e r a c t i o n −> (2 , node2 )

Figure 1: Pseudocode for the tiled dependency graph dot file creation.

0,0

1,01,1 1,2 1,31,4

0,1

1,5 1,6 1,7

0,2

1,8

0,3

1,9 1,10

0,4

1,11 1,12 1,131,14

0,5

1,15

0,6 0,7

1,16

0,80,9

2,0 2,12,2 2,3 2,42,6 2,82,5 2,7 2,9

Figure 2: test.graph’s dependency graph with tiling (6 tiles)
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Figure 3: test.graph’s dependency graph with tiling (6 tiles) after partition graph coloring
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// i n i t i a l i z e the d i f f e r e n t to the max
// d i f f e r ence there can be between the
// hues of the co lor s
c o l o r s array = {}
d i f f e r e n c e = 1/numberOfColors

// add to the co lor s array each new hue by
// adding the d i f f e r ence to the previous hue
for numberOfColors t imes

cur rent c o l o r = prev ious c o l o r + d i f f e r e n c e

Figure 4: Pseudocode for the distinct color generating algorithm.

4 Labeling of Tiles

The number of tiles created by the program is a parameter of taskMaster, that is the program that creates
task graphs. Anywhere from 1 to the number of interactions can be entered for this parameter which poses
a problem when creating the fine grained dependence graph. Each tile in the fine grained dependence graph
needs to have a distinctly visible color so that the tiles are easily differentiable. If there are not enough
colors available to color code each tile the tiles are hard to discern from one another, that poses a problem.

This problem is where the labeling algorithm comes in, each tile is labeled with a color. The algorithm is
used to create an array of easily differentiable colors, enough to color each tile differently. The colors are
easily differentiable when there is high contrast between then. The algorithm uses the HSV color values
which can be used with dot. HSV specifies the hue, saturation, and value of a color. The saturation as
well as the value are kept constant at 1.0000 when creating new colors for the tiles. Just adjusting the hue
provides a wide range of distinct colors. Another option would have been to generate RGB values. The
problem with using RGB values is that they have the ability to create a lot of shades of grey which makes
the possibility of coming up with an indistinct color more likely. Adjusting the hue, on the other hand, does
not create these shades of grey and therefore creates colors that are easy for the human eye to discern. The
values for the hue can go anywhere from 0.0000 to 1.0000. The further apart the numbers, the more distinct
the colors. The algorithm starts with an array that contains the colors with only the hue 0.0000 in it. It
also has a variable that holds the difference to use when generating new values which is initialized to

1
numberOfColors

(1)

since this is the maximum possible difference between each hue. The rest of the algorithm is simple. The
loop iterates as many times as needed for how many colors are required. With each iteration of the loop
another value is added to the colors array. The new value is the sum of the previous value plus the difference.

colorArray[i] = colorArray[i− 1] + difference (2)

This value is stored and the loop goes on to the next iteration. This algorithm generates just enough colors
for the current tiling. There is no limit on the number of different colors that can be generated by the
algorithm but if a number too high is used then the colors start to blur together. At 20 different colors a
few of the colors start to look too similar to be easily differentiable.

The result of this process can be seen in the pseudocode in Figure 4.

5 Coarse Grained Dependence Graph

The task graph for moldyn is used to show the dependency between each task. In moldyn each task is
represented by a tile. The already implemented task graph interface was used to create a program to
generate task graphs for moldyn simulations. While the program is doing the tiling an edge is created
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Figure 5: An example task graph without partition graph coloring
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Figure 6: A task graph with the partition graph coloring algorithm applied

between tiles every time there is a dependency between the tiles. An example of this could be if a molecule
in the first loop (the molecules loop) is in tile 1 but it is involved in an interaction in tile 2 but it makes more
sense to keep that molecule in the first tile. This type of situation would create a dependency between the
tiles. In the dot representation of the graph only one directed edge is generated between tiles/tasks regardless
of how many dependencies are between them. For each of the tasks generated, the work performed by those
tasks is to run the actual moldyn computation code and print out the results.

6 Partition Graph Coloring

In the main driver, taskMaster, a flag is provided for the option to create a partition graph, color it, and
reorder the tiles in order to provide better parallelism [2]. This process helps to reorder the tiles in a way
such that they can run in parallel more efficiently. In order to this a color graph is created first. The color
graph contains a node for each seed partition. There is a loop over the interactions array in which each pair
of molecules is checked to see if they are in different tiles. If they are in different tiles, an edge is added
between the tiles the molecules are in. For example if there is an interaction between molecule 0 which is in
tile 4 and molecule 1 which is in tile 2 there is an undirected edge from node 2 to node 4 in the color graph.
After a color graph has been created it is colored using a graph coloring algorithm. This algorithm colors
the graph with the minimum colors possible where no two connected nodes are the same color. This colored
graph is then given to a function that reorders the nodes in the graph according to their color and returns
a new tile ordering for the nodes. At this point the iterations of the moldyn loops can be modified to be
in their new tiles. The resulting task graph shows more parallel computation is possible and the average
parallelism is computed to prove this. An example of this can be seen in by the differences in Figure 5 and
Figure 5. In Figure 5 there aren’t many nodes that can be run in parallel as can be seen by the lack of
horizontally adjacent nodes. In Figure 5 there are more adjacent nodes than in Figure 5. Notice that 2, 1,
and 3 lie horizontal to each other and can all be run in parallel and 5 and 4 are the same way in Figure 5.
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Table 3: Information about the pdb files used

input size

1xib.pdb 306.7 KB

3Q8X.pdb 988.2 KB

3NZ8.pdb 1.1 MB

3RFZ.pdb 1.6 MB

2IA5.pdb 2.5 MB

In this case there is only one node (node 0) that cannot be run in parallel with any other. In the case of
the graph before the coloring (Figure 5) there are two nodes, 0 and 1 that are not run in parallel with any
others.

7 Calculating the number of tiles that fit into L1 cache

In order to get the best results from running tests on a certain machine the tests were optimized so that
a tile could fit into L1 cache. L1 cache was used because the files used to run the tests were small enough
that all the tiles could fit in L2 cache already. The first step was to figure out on average how many unique
molecules were involved in a tile. I ran multiple tests on different graphs and came up with an equation

f(x) = 0.33966x + 7.5 (3)

where x is the number of interactions and f(x) is the average number of unique molecules accessed in those
interactions. At this point we know that 72 bytes is taken up by each interaction. In order to figure out the
memory footprint of each tile the equation

mem = f(x) ∗ 72mem = (0.33966x + 7.5) ∗ 72 (4)

is used. The L1 cache for a machine called carrot, that all the tests were run on, is 32KB. In order to fit
a tile into L1 cache on carrot it must be less than 32KB. From this data we can use the equation above to
determine how many interactions can fit in the L2 cache and in turn how many tiles should be used when
running the test. If we solve for x we get

x = ((mem/72) − 7.5)/0.33966 (5)

Substituting in the amount of memory in L1 cache, 32KB for example, we get

x = (((32 ∗ 1024)/72) − 7.5)/0.33966 = 1317.82interactions (6)

From this we can determine the number of tiles needed so that each tile can run on L1 cache by dividing
the total number of interactions by the number of interactions calculated above.

tiles = totalinteractions/interactionsincache (7)

This process allows for the tests to be optimized for a given computer. The process was used to calculate
the number of tiles for each of the pdb files used for testing (shown in Table 3). Each of the files had its own
set of tile sizes to optimize the tests.

8 Partition Graph Coloring Results

The results show that average parallelism was greatly affected by the partition graph coloring. The results of
tests run on the five files in Table 3 show that the execution of the moldyn code is linear without the partition
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Figure 7: Results of the partition graph coloring with Partition Size
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Figure 8: Results of the partition graph coloring with Number of Tiles

graph coloring. Each of the five files have been linear in execution for each of the 10 tests performed without
the partition graph coloring. With the partition graph coloring algorithm applied the average parallelism
has increased. For example, the results in Figure 7 display the results for the file 3RFZ.pdb with a dotted
red line connecting red squares. The line with the not filled in squares represents the results for that file
without the partition graph coloring, all of these results lie on a straight line with an average parallelism
of 1, which means they run linearly. The results with the partition graph coloring are represented with the
filled in red squares. As you can see the average parallelism (y-axis) is much higher with the partition graph
coloring. These same results are also displayed in Figure 8 with the x-axis as the tile size rather than the
partition size. The results are as expected since the average parallelism increases with the partition graph
coloring algorithm applied. A higher average parallelism is good because that means that more parts of the
code are running in parallel which makes the execution time faster.

9 Conclusion

I learned a lot of new things from this project. I learned about average parallelism and sparse tiling. I
never understood how to measure the amount of parallelism of code before learning what average parallelism
was and how to calculate it. I also learned what sparse tiling is and what the applications of it are. My
results showed that using the partition graph coloring algorithm on the loops in the moldyn computation
can increase the overall average parallelism of the code. They also showed that the average parallelism of
the code without the partition graph coloring algorithm is 1 which means it runs serially. Future work for
this project could include running tests to see if the overhead of partition graph coloring is less than the
actual benefit of the algorithm to see if it is worth performing. Also, creating an OpenMP version of the
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moldyn code to compare the execution time of the computation with sparse tiling to see which performs
better overall would be beneficial to finish.
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