Computational Linguistics and Computational Biology

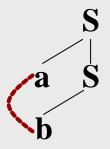
Fernando Pereira CIS, University of Pennsylvania with

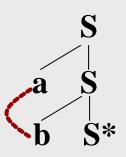
Aravind Joshi Mark Liberman et al

Computational Linguistics

- Data-driven revolution:
 - Large text and speech datasets
 - Experimental, rigorous evaluation
 - Machine learning dominates
- Sequence modeling
 - Grammars for describing sequence structure
 - Learning grammars/parameters: classification, segmentation, parsing
- Information management
 - Entity and relation extraction
 - Integration

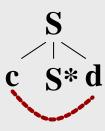
Sequence Modeling

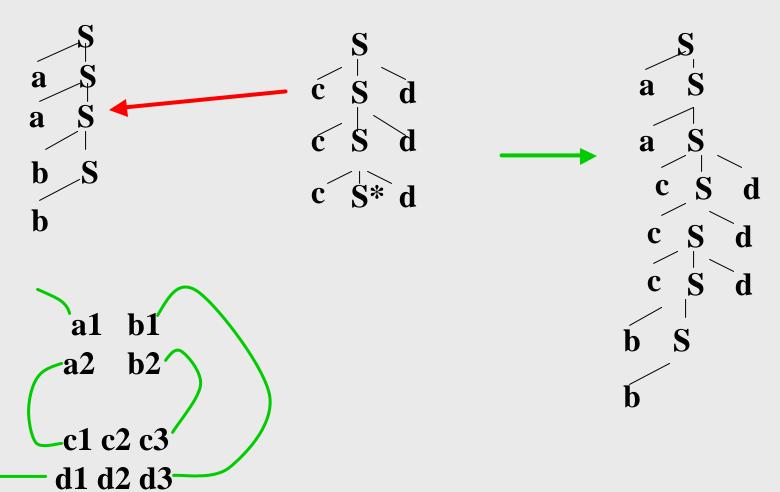

- Previous successes
 - Local sequence statistics: Markov models
 - Sequence structure: finite-state and context-free grammars
- Challenges:
 - More complex structures: folding
 - Long-range dependencies
 - Integrating multiple sources of evidence


Grammatical Techniques

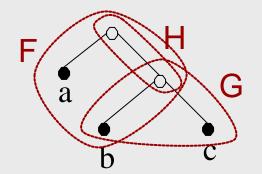
- Modeling folded structures in RNA and proteins using tractable mildly contextsensitive formalisms
 - Pseudoknots
 - Doubly embedded pseudoknots
 - Complex beta-sheet folds
- Efficient exact computation of folding free energy ⇒ probabilistic grammars

Tree Adjoining Grammar


Elementary trees:


Assembly by

- substitution
- adjoining (inserting in)


----- matching base pairs

Pseudoknot

Grammars and Probabilities

- Learn the statistical distribution of segmentations/analyses/conformations
- Standard approach: probabilities of derivation steps
 - Problems: hard to model long-distance interactions, evidence combination
- New approach: conditional undirected graphical models/random fields

$$P(\text{analysis | sequence}) = \frac{\exp(V(F) + V(G) + V(H))}{Z(\text{sequence})}$$

Proposed Applications

- Folded structures:
 - Verify structural predictions of grammatical models
 - Develop probabilistic parameterization for fold prediction
- Mining Apicomplexa genomes :
 - Better TIS recognition
 - Identify novel apicoplast-targeted proteins

Better Information Extraction

- Create high-quality annotated corpus
- High-accuracy statistical parsing
- Shallow semantic analysis
- Database integration
- Proposed applications:
 - Enzyme inhibitors
 - Genotype/phenotype relations