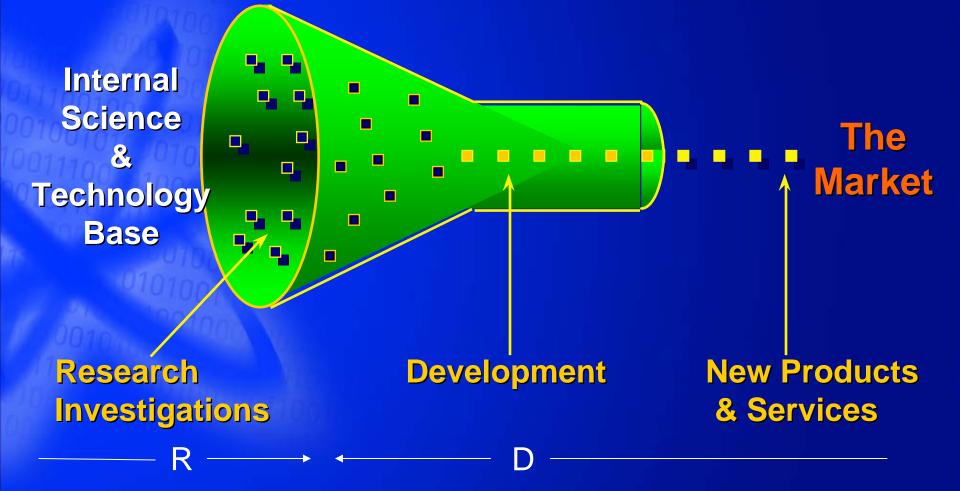
Comments on Industry Research @CRA Snowbird


David Tennenhouse Vice President, Corporate Technology Group Director of Research, Intel Corporation July 2004

Intel Research

www.intel.com/research

Past: Closed Innovation

Intel Research

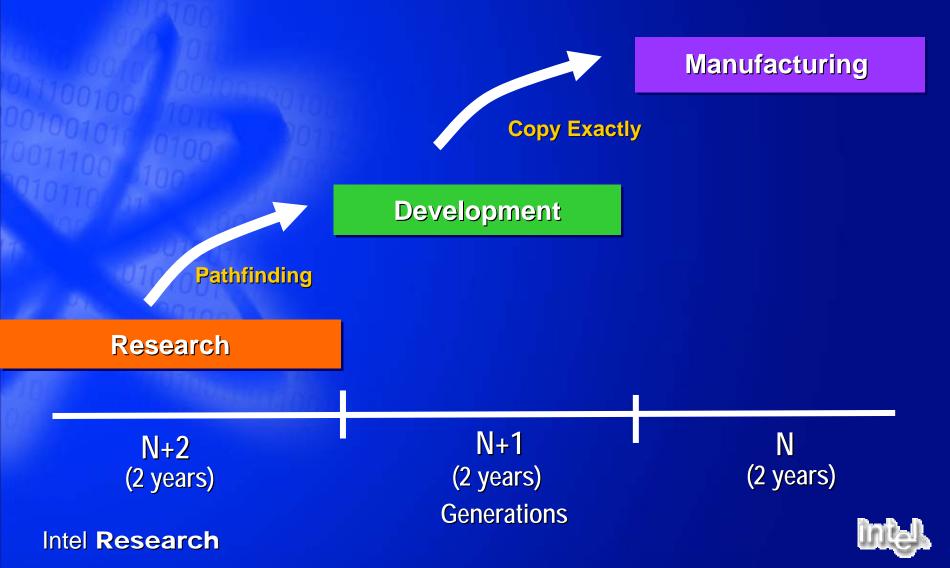
Henry Chesbrough of Berkeley's Haas School of Business, and the author of the book titled <u>Open Innovation</u>

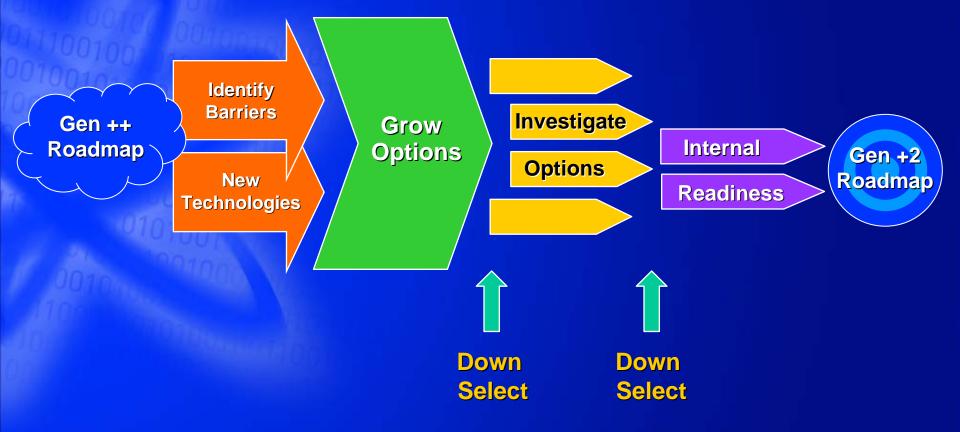
Universities are the "Radar"
 Exploratory vs. Roadmap Research
 "Concurrent Research"
 The Vision Thing
 Multiple Paths to Value

Why was PARC Successful in its Research?

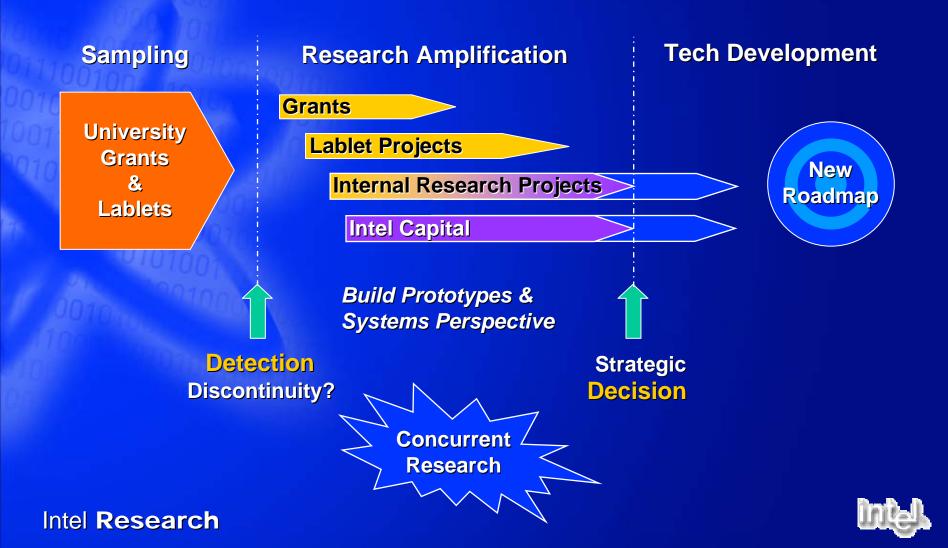
- In the 1970's it was possible to corral a significant fraction of the world's best "computer systems" researchers
 - Everyone else came to visit
 - PARC was the "packet switch" for new ideas; they were positioned to jump on all the good ideas & hybridize them with their own

Why Can't PARC be Done Today?


Success: Many more researchers & good ideas!
 Today....Universities are the "idea switches"


Universities are the "Radar"
 Exploratory vs. Roadmap Research
 "Concurrent Research"
 The Vision Thing
 Multiple Paths to Value

Roadmap Driven Semiconductor R&D



Roadmap Driven Research (Semiconductor & Microprocessor Design)

Exploratory Research

Universities are the "Radar"
 Exploratory vs. Roadmap Research
 "Concurrent Research"
 The Vision Thing
 Multiple Paths to Value

University Open Collaborative Labs

Focus: Extreme interconnected infosystems

- Sensor Networks
- Internet-Scale Services
- IT for Developing Regions

Joe Hellerstein Director

- Focus: Software for widely distributed systems
- Internet Suspend / Resume
- Diamond
- IRISNet
- Open Hash

Todd Mowry Director

Focus: Networks & distributed systems

- Optical Networking
- Virtual IO
- Statistics

Derek McAuley Director

Focus: New usage models for ubiquitous computing

UNIVERSITY OF

CAMBRIDGE

- Digital Home
- Healthcare
- Activity Inferencing
- Location

University of Washington

James Landay Director

Internal Research Projects DARPA Approach Directed research (vs. curiosity) No excuses technology transfer Tech transfer ~ People transfer Coopetition: Competition & hybridization Strategies drive grants, lablets and Intel **Capital investments**

Tech Transfer: Learn Early & Shape "Pull"

Initiate New Projects

Measurable Deliverables

Get Results Into the hands of Lead Users

Early Feedback

Examples:

- RF MEMS (Samples)
- Precision Biology (Proxy)
- Bayesian Networks (Manufacturing)
- Nanovision (Manufacturing)
- Mesh Networking (Manufacturing & Ecologists)
- PlanetLab (Reverse Transfer)

Upside Surprises

- Lablets (sometimes) function as a network
- Researchers value their lead users
- Reputation for building research communities & infrastructure
 - ⇒New notion of "reverse transfer"

Examples: Sensor Net Toolkit PlanetLab Robotics Platform Machine Vision / Learning Libraries Place Lab

Universities are the "Radar"
 Exploratory vs. Roadmap Research
 "Concurrent Research"
 The Vision Thing
 Multiple Paths to Value

Proactive Computing

- **Today: Computers are interactive**
- We are always waiting for them or viceversa
- **Tomorrow: Computers will be Proactive**
- They will anticipate our needs and act on our behalf

Make it Personal Empowering individuals and addressing their concerns over security and privacy	
Closing the Loop Bridging the gap between anticipating and acting on needs – predictably, and under human supervision	n
Anticipation Creating proactive software that anticipates our need and produces answers before they are required	eds
Dealing with Uncertainty Using statistical modeling to deal with uncertainty inherent in the physical world	
Planetary Scale Systems Developing software that works across a wide rang of diverse platforms and networks	е
Deep Networking billions of embedded nodes; driving computing deeper into the infrastructure the surrounds us	at
Getting Physical Connecting computers directly to the physical worl around them	d

Universities are the "Radar"
 Exploratory vs. Roadmap Research
 "Concurrent Research"
 The Vision Thing
 Multiple Paths to Value

Paths to Value

- PR: technology leadership
- New channels for existing products
- New products for existing businesses
- New businesses
- New corporate strategies

Radio Free Intel

3.5 Years ago

Started 3 "inexpensive RF" internal projects
Intent of creating an RF competency

2.5 Years ago
"precipitated" a new corporate technology lab
24 Months ago
CTO announces Radio Free Intel R&D initiative

Today

Intel perceives itself differently

Push vs. Pull

Tech Push: Exploratory

- Central funding / Disruptive (vs. Long term)
- Strategy (vs. topics) framed by external "radar" (vs. curiosity)
 - Challenge: loosely aligning small teams to achieve strategic goals
- Substantial tech transfer barriers!

Demand Pull: Roadmap

- \$\$ From business technologists / Linear (vs. Short term)
- Topics developed with business units
- Has a ready customer (?)
- Market Shaping / +ve Feedback
 - Create awareness amongst corp market strategists

