

Technology Design for Older Adults

Wendy A. Rogers, Ph.D.

Director: Human Factors and Aging Laboratory

School of Psychology

Georgia Institute of Technology

How can technology ENHANCE the lives of older adults... ...by enabling, augmenting, empowering, advancing, energizing, engaging, etc.?

- Develop strategies to match technology support with active engagement
- Balance between technology support, augmentation, replacement
- Develop technologies to challenge and enhance functional capabilities
- Focus on issues of motivation, self-efficacy, integration, engagement, safety, privacy, social connectedness

Human Factors and Aging Laboratory: Support Independent (Successful) Aging

- Allow individuals to function effectively and independently as they age.
- Maintain personal autonomy.
- Retain and enhance ability to function in later life.
- Contributors to healthy aging and are thus laudable goals but challenging to accomplish...

Theme of my remarks....

 Embrace the complexity of the problem of designing technology for older adults!

- Guided by World Health Organization's International Classification of Functioning, Disability and Health (ICF)
 - Disability as a continuum
 - Activity and participation as equal goals

Response to challenges of aging

CREATE Model of the Human/Technical System

EXAMPLE OF DESIGNING ROBOTS FOR OLDER ADULTS

How do we design robots to support healthy aging?

- What do robots need to do?
 - Communicate with humans
 - Perform tasks for/with the person
 - Be trustworthy
 - Provide social support
 - Have an appearance people like
- Multi-faceted problem
- Solution success depends on:
 - understanding older adults' capabilities,
 limitations, needs, preferences, attitudes
 - involving older adults in process of development and testing

What do people want their personal robots to look like?

It depends...

Younger Adults

Chores: Cleaning your home

Decision Making: **Investing** your money

1. Ropotic

2. Mixea

5. Human-like

Importance of Appearance

- What people want their robot to look like differs for:
 - Younger and older adults
 - Different types of tasks
- Have to consider the humans and the diversity of human needs and preferences
 - This understanding will facilitate the design of the most appropriate robots that will add to the functional capabilities of older adults

Framework for Human-Robot Interaction in Healthcare Contexts

Successful

Human-

Robot

Interaction

Human User

- -Age/education/sex
- -Attitudes
- -Cognitive
- -Confidence
- -Expectations
- -Goals (comfort, speed)
- -Motor
- -Perceptual
- -Personality/affect/emotion
- -Preferences
- -Robot experience
- -Self-efficacy/locus of control

Task Constraints

- -Approach (front, side)
- -Consequence of error
- -Criticality
- -Device/Supply features (thermometer, medication bottle, blood pressure)
- -Dynamic process
- -Interaction control demands (precision, method)
- -Invasiveness
- -Physical discomfort
- -Proximity
- -Speed/Accuracy requirements

Robot Characteristics

- -Adaptability
- -Appearance
- -Autonomy (programmed, independent)
- -Consistency (predictability)
- -Dexterity (manipulation)
- -Error recovery
- -Feedback/transparency
- -Interaction method (voice, gesture, pointer)
- -Learning method/state
- -Maneuverability
- -Personality/affect/emotion
- -Reliability (accuracy)
- -Responsiveness

Context of Interaction

- -Care network
- -Culture
- -Living environment (private home
- vs. residential facility)
- -Job demands
- -Safety considerations
- -Single/Multiple care provider(s)
- -Single/Multiple care recipient(s)
- -Social environment
- -Stress level

Human User

- -Age/education/sex
- -Attitudes
- -Cognitive
- -Confidence
- -Expectations
- -Goals (comfort, speed)
- -Motor
- -Perceptual
- -Personality/affect/emotion
- -Preferences
- -Robot experience
- -Self-efficacy/locus of control

Robot Characteristics

- -Adaptability
- -Appearance
- -Autonomy (programmed, independent)
- -Consistency (predictability)
- -Dexterity (manipulation)
- -Error recovery
- -Feedback/transparency
- -Interaction method (voice, gesture, pointer)
- -Learning method/state
- -Maneuverability
- -Personality/affect/emotion
- -Reliability (accuracy)
- -Responsiveness

Task Constraints

- -Approach (front, side)
- -Consequence of error
- -Criticality
- -Device/Supply features (thermometer, medication bottle, blood pressure)
- -Dynamic process
- -Interaction control demands (precision, method)
- -Invasiveness
- -Physical discomfort
- -Proximity
- -Speed/Accuracy requirements

Context of Interaction

- -Care network
- -Culture
- -Living environment (private home vs. residential facility)
- -Job demands
- -Safety considerations
- -Single/Multiple care provider(s)
- -Single/Multiple care recipient(s)
- -Social environment
- -Stress level

Framework for Human-Robot Interaction in Healthcare Contexts

Successful

Human-

Robot

Interaction

Human User

- -Age/education/sex
- -Attitudes
- -Cognitive
- -Confidence
- -Expectations
- -Goals (comfort, speed)
- -Motor
- -Perceptual
- -Personality/affect/emotion
- -Preferences
- -Robot experience
- -Self-efficacy/locus of control

Task Constraints

- -Approach (front, side)
- -Consequence of error
- -Criticality
- -Device/Supply features (thermometer, medication bottle, blood pressure)
- -Dynamic process
- -Interaction control demands (precision, method)
- -Invasiveness
- -Physical discomfort
- -Proximity
- -Speed/Accuracy requirements

Robot Characteristics

- -Adaptability
- -Appearance
- -Autonomy (programmed, independent)
- -Consistency (predictability)
- -Dexterity (manipulation)
- -Error recovery
- -Feedback/transparency
- -Interaction method (voice, gesture, pointer)
- -Learning method/state
- -Maneuverability
- -Personality/affect/emotion
- -Reliability (accuracy)
- -Responsiveness

Context of Interaction

- -Care network
- -Culture
- -Living environment (private home
- vs. residential facility)
- -Job demands
- -Safety considerations
- -Single/Multiple care provider(s)
- -Single/Multiple care recipient(s)
- -Social environment
- -Stress level

Conclusion

- Recognize the complexity of
 - Human-Technology Interaction
 - Human-Computer Interaction
 - Human-Automation Interaction
 - Human-Robot Interaction
- Challenging but solvable problems
 - Need to be guided by theory
 - Systematic and comprehenisve approach
 - Develop generalizable solutions (not technology-specific)

Center for Research and Education on Aging and Technology Enhancement (www.create-center.org)

R E R C
TechSAge

Technologies to Support Successful Aging with Disability (www.TechSAge.gatech.edu)

National Institute on Aging (National Institutes of Health)
PO1 AG017211

National Institute on Disability and Rehabilitation Research (Department of Education) *Grant H133E130037*