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Overview

• Task: human-realistic music performance

• Challenges:

• expressive timing and dynamics
• generating musical variations
• choosing appropriate timbres (instruments)

• Today: Learning expressive timing and dynamics for the piano

• Applications: music generation for film and video games

• Work done in collaboration with Stanislas Lauly
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FRANTIC
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SPOOKY

An interesting task... context-aware music generation
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Music Composition 
(from video game 

composer)
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Audio similarity + morphing

• We can predict words like “sad” and “jazzy” from audio. Resulting 
wordset useful for music recommendation (Eck et al. NIPS 07)

• We can also morph between artists based on word vector similarity

• Similar technique may allow us to generate a “dangerous” sound based 
on analysis of songs people think sound dangerous.
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• Many challenges:

• expressive timing and 
dynamics

• generating musical 
variations

• choosing appropriate 
timbres (instruments)

• Today: Learning 
expressive timing and 
dynamics for the piano

 Chopin Etude 
Opus 10 No 3



Example: 
Chopin Etude 
Opus 10 No 3

Deadpan 
(no expressive timing or dynamics)

Human performance 
(Recorded on Boesendorfer ZEUS)

Differences limited to:
•timing (onset, length)
•velocity (seen as red)
•pedaling (blue shading)
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What can we measure?
• Repp (1989) measured note IOIs in 19 famous recordings of a 

Beethoven minuet (Sonata op 31 no 3)
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I. Repeats 

It is evident, first, that repeats of the same material had 
extremely similar timing patterns. This consistency of pro- 
fessional keyboard players with respect to detailed timing 
patterns has been noted many times in the literature, begin- 
ning with Seashore ( 1938, p. 244). The only systematic de- 
viations occurred in bar 1 and at phrase endings (bars 8, 15- 
16, and 23/37-24/38), where the music was, in fact, not 
identical across repeats (see Fig. 1): In bar 1, Beethoven 
added an ornament (a turn on E-flat) in the repeat (bar 1B), 
which was slightly drawn out by most pianists. In bar 8A, 

which led back to the beginning of the Minuet, the upbeat 
was prolonged, but in bar 8B, which led into the second 
section of the Minuet, an additional ritard occurred on the 
phrase-final (second) beat. Similarly, a uniform ritard was 
produced in bar 16A, which led back to the beginning of the 
second Minuet section, and an even stronger ritard occurred 
on the phrase-final (first and second) notes of bar 16B, 
which constituted the end of the Minuet, whereas the third 
note constituted the upbeat to the Trio and was taken 
shorter. Bar 15 anticipated these changes, which were more 
pronounced in the second playing of the Minuet, following 
the Trio. Similarly, bar 37 anticipated the large ritard in bar 

628 J. Acoust. Sec. Am., Vol. 88, No. 2, August 1990 Bruno H. Repp: Expressive timing in a Beethoven minuet 628 

Grand average timing patterns of performances with repeats plotted separately. 
(From B. Repp “Patterns of expressive timing in performances of a Beethoven 
minuet by nineteen famous pianists”,1990)
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What can we measure?

• PCA analysis yields 2 major 
components

• Phrase final lengthening
• Phrase internal variation

• Simply taking mean IOIs yields can 
yield pleasing performance

• Reconstructing using principal 
component(s) can yield pleasing 
performance

• Concluded that timing underlies 
musical structure

11

A
da

pt
ed

 fr
om

 R
ep

p 
(1

99
0)

•L00- 

•000- 

600- 

B00- 

700- 

600- 

500- 

FACTOR I 

I I I I I I I I 

I E 3 q 5 6 7 8 

BRR 

I I I I I I I 

9 10 11 1E 13 lq 15 16 

NO. 

D 

U 

R 

T 

I 

O 

N 

I 

N 

800 

788- 

608- 

580- 

900- 

088- 

708- 

608- 

500- 

FACTOR 2 

./ 

I I I I I I I I I I I I I I I I 

I E :3 q 5 6 7 8 El 18 11 1E 13 lq 15 

BRR NO, 

FACTOR 3 

I [ I I I I I I I I I I I I I I 
I E 3 q 5 6 7 8 9 10 11 IE 13 tq 15 16 

BRR NO, 

were quite rare in the present composition. Eighth-notes 
were common but provided less information, since they re- 

duced the four-beat pulse to a two-beat pulse. Some mea- 
surement problems were also encountered. Nevertheless, 

some data were obtained about the temporal microstructure 
at this level. 

A. Sixteenth-notes 

1. Measurement procedures 

Sequences of two sixteenth-notes occur in several places 
(bars 7, 20, and 34), but proved very difficult to measure; the 

onset of the second note could usually not be found in the 
acoustic waveform. Therefore, the measurements were re- 

stricted to single sixteenth-notes following a dotted eighth- 
note. Such notes occur in bars 0/8A, 1, 4, and 8B/16A of the 

Minuet, in bar 23/37 of the Trio, and throughout the Coda. 
With four repeats of the Minuet and two of the Trio in most 

performances, there were generally four independent mea- 
sures available for each of the four sixteenth-note occur- 

rences in the Minuet and for the single occurrence in the Trio 

(the latter really being two similar occurrences, each repeat- 
ed twice). For the Coda, of course, only a single set of mea- 
surements was available for each artist, but there were 11 
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Timing versus expressive dynamics

• Repp (1997; experiment 2):  generated MIDI from audio for 15 famous 
performances of Chopin’s op. 10 No 3;  Added 9 graduate student 
performances

• Retained only timing (no expressive dynamics)

• Judges ranked the average timing profile of the expert pianists (EA) 
highest, followed by E11, S1, S3, S9, S2, and SA.

• Conclusions:
• EA, SA sound better than average but “lack individuality” (Repp)
• Something is lost in discarding non-temporal expressive dynamics. 
• Crucial point:  EA and SA sound good

12

mailto:douglas.eck@gmail.com
mailto:douglas.eck@gmail.com


Douglas Eck douglas.eck@umontreal.ca

KTH Model

• Johan Sundberg, Anders Friberg, many others

• Models performance of Western music

• Rule-based system built using 
• analysis-by-synthesis: assess impact of individual rules by listening
• analysis-by-measurement:  fit rules to performance data

• Incorporates wide range of music perception research (e.g. 
meter perception, pitch perception, motor control 
constraints)
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Anders Friberg, Roberto Bresin, and Johan Sundberg 

1994; Desain & Honing, 1994; Honing, 2005a). For most 

of the rules, our starting point has been to implement 

expressive deviations relative to the tempo, i.e. analo-

gous to Weber’s law2. This approach works well within a 

tempo range when note durations are not too short3. The 

most notable exceptions are the rules Duration contrast 

and Swing ensemble, described below. 

The role of performance marks such as accents or 

phrase marks in the score may also be considered. 

These marks are often treated more as a guideline for 

the performance than mandatory ways of performing 

the piece. Furthermore, these marks are often inserted 

by the editor rather than the composer. Therefore, we 

have in general avoided incorporating such marks in 

the score, thus, mainly trying to model the perform-

ance from the “raw” score. One exception is the set of 

rules for notated staccato/legato.

 Certain aspects of musical structure must be pro-

vided manually by the user because they are not 

readily evident from surface properties. For example, 

automatic extraction of phrase structure and harmonic 

structure is a difficult process (Temperley, 2001; 

Ahlbäck, 2004), but these analyses are essential for 

the phrasing and tonal tension rules respectively. Thus, 

these structural characteristics must be added to the 

score manually by the user so that they can trigger the 

phrasing and tonal tension rules. One exception is the 

rule for musical punctuation, which automatically finds

the melodic grouping structure on a lower level.

Because the rules act upon a range of structural 

characteristics of music, they provide an expressive 

interpretation of musical structure. An analogous func-

tion is observed in speech prosody, which introduces 

variation in a range of acoustic features (intensity, 

Phrasing

Phrase arch Create arch-like tempo and sound level changes over phrases

Final ritardando Apply a ritardando in the end of the piece

High loud Increase sound level in proportion to pitch height

Micro-level timing

Duration contrast Shorten relatively short notes and lengthen relatively long notes

Faster uphill Increase tempo in rising pitch sequences

Metrical patterns and grooves

Double duration Decrease duration ratio for two notes with a nominal value of 2:1

Inégales Introduce long-short patterns for equal note values (swing)

Articulation

Punctuation Find short melodic fragments and mark them with a final micropause

Score legato/staccato Articulate legato/staccato when marked in the score

Repetition articulation Add articulation for repeated notes.

Overall articulation Add articulation for all notes except very short ones

Tonal tension

Melodic charge Emphasize the melodic tension of notes relatively the current chord

Harmonic charge Emphasize the harmonic tension of chords relatively the key

Chromatic charge Emphasize regions of small pitch changes

Intonation

High sharp Stretch all intervals in proportion to size

Melodic intonation Intonate according to melodic context

Harmonic intonation Intonate according to harmonic context

Mixed intonation Intonate using a combination of melodic and harmonic intonation

Ensemble timing

Melodic sync Synchronize using a new voice containing all relevant onsets

Ensemble swing Introduce metrical timing patterns for the instruments in a jazz ensemble

Performance noise

Noise control Simulate inaccuracies in motor

Table 1. 

An overview of the rule system

From: A. Friberg, R. Bresin & J. 
Sundberg (2006). Overview of the 
KTH rule system for musical 
performance. Advances in Cognitive 
Psychology, 2(2-3):145-161. 



From: A. Friberg, R. Bresin 
& J. Sundberg (2006). 
Overview of the KTH 
rule system for musical 
performance. Advances in 
Cognitive Psychology, 2(2-3):
145-161. 

Overview of the KTH rule system for musical performance
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fects. For example, when several rules that act upon 

note durations are combined, a note might be length-

ened too much. Some of these possible rule conflicts

have been solved in the rule context definitions. A mi-

cro-timing rule and a phrasing rule, although acting on 

the same notes, work on different time scales and will 

not interfere with each other. Figure 2 illustrates the 

effect of IOI variations resulting from six rules applied 

to a melody.

How to shape a performance: 
Using the rules for modeling 
semantic performance 
descriptions.

It can be rather difficult to generate a specific perform-

ance with the rule system, given the many degrees-

of-freedom of the whole rule system with a total of 

about 30-40 parameters to change. This procedure is 

greatly simplified if mappings are used that translate

descriptions of specific expressive musical characters

to corresponding rule parameters. Overall descriptions 

of the desired expressive character are often found at 

the top of the score. They may refer to direct tempo 

indications (lento, veloce, adagio) but also to mo-

tional aspects (andante, corrente, danzando, fermo, 

con moto) or emotional aspects (furioso, con fuoco, 

giocoso, vivace, tenero). These semantic descriptions 

of the expressive character can be modeled by select-

ing an appropriate set of rules and rule parameters 

in a rule palette.  Research on emotional expression in 

music performance has shown that there tends to be 

agreement among Western listeners and performers 

about how to express certain emotions in terms of 

performance parameters (Juslin, 2000). Using these 

results as a starting point, we modeled seven differ-

ent emotional expressions using the KTH rule system 

(Bresin & Friberg, 2000; Bresin, 2000). In addition 

to the basic rule system, we also manipulated overall 

tempo, sound level and articulation. A listener test 

confirmed the emotional expression resulting from

the defined set of rule parameters (rule palettes) for

two different music examples. Table 2 suggests some 

Figure 2. 

The resulting IOI deviations by applying Phrase arch, Duration contrast, Melodic charge, and Punctuation to the Swedish nursery tune 
“Ekorr’n satt i granen”. All rules were applied with the rule quantity k=1 except the Melodic charge rule that was applied with k=2.
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Widmer et al. performance model

• Automatic deduction of rules for music performance

• Rich feature set (29 attributes including local melodic contour, 
scale degree, duration, etc)

• Performance is matched to score (metrical position).

• PLCG: Partition Learn Cluster Generalize (Widmer, 2003)
• Discovery of simple partial rules-based models
• Inspired by ensemble learning

• PLCG compares favorably to rule learning algorithm RIPPER

• Rules learned by PLCG similar to some KTH rules 
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Fig. 5. Mozart Sonata K.331, 1st movement, 1st part, as played by pianist and learner. The curve plots the relative

tempo at each note—notes above the 1.0 line are shortened relative to the tempo of the piece, notes below 1.0

are lengthened. A perfectly regular performance with no timing deviations would correspond to a straight line at

y = 1.0.

simple rules (one for note lengthening (ritardando), one for shortening (accelerando)) that

produce the system’s timing curve.4

The next question concerns the generality of the discovered rules. How well do they

transfer to other pieces and other performers? To assess the degree of performer-specificity

of the rules, they were tested on performances of the same pieces, but by a different

artist. The test pieces in this case were the Mozart sonatas K.282, K283 (complete) and

K.279, K.280, K.281, K.284, and K.333 (second movements), performed by the renowned

conductor and pianist Philippe Entremont, again on a Bösendorfer SE290. The results are

given in Table 3.

Comparing this to Table 2, we find no significant degradation in coverage and precision

(except in category diminuendo). On the contrary, for some categories (ritardando,

crescendo, staccato) the coverage is higher than on the original training set. The

discriminative power of the rules —the precision—remains roughly at the same level. This

(surprising?) result testifies to the generality of the discovered principles; PLCG seems to

have successfully avoided overfitting the training data.

Another experiment tested the generality of the discovered rules with respect to musical

style. They were applied to pieces of a very different style (Romantic pianomusic), namely,

the Etude Op.10, No.3 in E major (first 20 bars) and the Ballade Op.38, F major (first 45

bars) by Frédéric Chopin, and the results were compared to performances of these pieces

by 22 Viennese pianists. The melodies of these 44 performances amount to 6,088 notes.

Table 4 gives the results.

This result is even more surprising. Diminuendo and legato turn out to be basically

unpredictable, and the rules for crescendo are rather imprecise. But the results for the

other classes are extremely good, better in fact than on the original (Mozart) data which

4 To be more precise: the rules predict whether a note should be lengthened or shortened; the precise numeric

amount of lengthening/shortening is predicted by a k-nearest-neighbor algorithm (with k = 3) that uses only

instances for prediction that are covered by the matching rule, as proposed in [26] and [27].
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4. Musical discoveries made by PLCG

Let us first look at some of PLCG’s discoveries from a musical perspective. Section 5

below we will then take a more systematic experimental look at PLCG’s behaviour relative

to more ‘direct’ rule learning.

4.1. Performance principles discovered

When run on the complete Mozart performance data set (41,116 notes) for each of

the six target concepts defined above,3 PLCG (with parameter settings MPPLCG = .7,

MCPLCG = .02,MPRL = .9,MCRL = .01) selected a final set of 17 performance rules (from

a total of 383 specialized rules)—6 rules for tempo changes, 6 rules for local dynamics, and

5 rules for articulation. (Two rules were selected manually for musical interest, although

they did not quite reach the required coverage and precision, respectively.) Some of these

rules turn out to be discoveries of significant musicological interest. We lack the space to

list all of them here (see [32]). Let us illustrate the types of patterns found by looking at

just one of the learned rules:

RULE TL2:

abstract_duration_context = equal-longer

& metr_strength ! 1

⇒ ritardando

“Given two notes of equal duration followed by a longer note, lengthen the note (i.e.,

play it more slowly) that precedes the final, longer one, if this note is in a metrically

weak position (‘metrical strength’ ! 1).”

This is an extremely simple principle that turns out to be surprisingly general and

precise: rule TL2 correctly predicts 1,894 cases of local note lengthening, which is 14.12%

of all the instances of significant lengthening observed in the training data. The number of

incorrect predictions is 588 (2.86% of all the counterexamples). Together with a second,

similar rule relating to the same type of phenomenon, TL2 covers 2,964 of the positive

examples of note lengthening in our performance data set, which is more than one fifth

(22.11%)! It is highly remarkable that one simple principle like this is sufficient to predict

such a large proportion of observed note lengthenings in a complex corpus such as Mozart

sonatas. This is a truly novel (and surprising) discovery; none of the existing theories of

expressive performance were aware of this simple pattern.

3 In this experiment, the data were not split into subsets randomly; rather, 10 subsets were created according

to global tempo (fast or slow) and time signature (3/4, 4/4, etc.) of the sonata sections the notes belonged to. We

chose these two dimensions for splitting because it is known (and has been shown experimentally [28]) that global

tempo and time signature strongly affect expressive performance patterns. As a result, we can expect models that

tightly fit (overfit?) these data partitions to be quite different, and diversity should be beneficial to an ensemble

method like PLCG.

From: G. Widmer (2003).  
Discovering simple rules in 
complex data:  A meta-
learning algorithm and some 
surprising musical 
discoveries. Artificial 
Intelligence 146:129-148. 
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Another approach...

• KTH model has many rule-weighting parameters to set 
by hand

• Widmer improves this by using optimization to set rules

• Both models rely heavily on score for feature extraction

• Our goals:

• Rely less on scores in order to work with non-scored music
• Treat as a regression task in order to use standard machine 

learning techniques

18
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Relying less on scores...

• Score provides crucial info about 
phrasing and meter

• But... musical score not always available

• Jazz, pop, blues use simple scores or none 
• Millions of audio examples available, but 

audio-to-score is hard

• Solution: estimate phrasing and meter 
from audio or MIDI (Eck, 2007)

• In current study we use scores but rely 
on features (mostly) obtainable using 
estimation. 

19
D. Eck. (2007). Beat tracking using an autocorrelation phase 
matrix. In Proceedings of the 2007 International Conference on 
Acoustics, Speech and Signal Processing (ICASSP), 1313-1316. 
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Treat as regression task ... 

y = f(x)

x is a note or set of notes (chord) described by:  

Durations (quarter note, half note, ... )
Amplitudes (piano, forte, ...)
Accelerations (crescendo, decrescendo, ...)
Position in measure
Position in phrase

y is expressive deviation described by:

Note velocities
Local time deviations (chord spread...)
Overall tempo deviation

20

When exact note 
durations are known 
(i.e. when a score is 
available) we use a 
binary input encoding.
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Regression algorithms
• Local variations likely learnable by any good regression method

• We also want to learn long timescale structure not encoded locally

• Baseline: recurrent neural network trained using BackProp Through Time

• Alternative: Deep Belief Network (Hinton et.al.) trained using contrastive 
divergence

21
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Experiment: Learn to Perform Schubert Waltzes

• 10 highly trained pianists (performance PhD, 
University of Montreal Faculty of Music)

• 5 similar waltzes by Schubert

• Recorded multiple performances for each pianist on 
Bösendorfer ZEUS reproducing imperial grand piano

• Store as MIDI (note times and durations; pedaling)

• At least 2 performances per piece per pianist;
for each performance, the piece was repeated

• 115 total performances; 38284 notes in all 

22
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Timing deviations for all 20 performances of a single waltz.
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Training and generation

Training: 

• Train algorithms on 4 pieces using MIDI performances 
captured from Bösendorfer ZEUS. 

• Ensure generalization using out-of-sample data

Generation:

• Predict note velocities, local time deviations and overall 
tempo deviation for 5th piece

• Generate machine performance as MIDI from predictions
• Record performance from MIDI on Bösendorfer ZEUS

24

Pianist pedaling was 
ignored.  We generated 
pedaling from note timing 
profile. (Future work)
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Mean timing deviations (blue) versus predicted deviations (red)
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Discussion

• Model learned:

• phrase final lengthening
• basic waltz feel (“lilt”)
• voice leading

• Model did not learn:

• more complex melodic phrasing
• good pedaling
• ability to make “radical” performance (regression to the mean)

• Baseline algorithm (standard BPTT recurrent network) 
performed as well as more complex algorithm (Deep Belief 
network)

26
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Conclusions

• Expressive timing and dynamics can be learned using 
straight-forward machine learning approach

• Score-related information is relatively easy to obtain from 
MIDI performance or audio

• Can form core “performace module” for online music 
generation software 
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